Sedimentology and Petroleum Potential of the Devonian/Mississippian Three Forks and Bakken Formations and Equivalent Strata in Central and Western Montana*

Michael H. Hofmann¹, Marc S. Hendrix², and Tetsuro Nagase²

Search and Discovery Article #10563 (2014)**
Posted January 13, 2014

*Adapted from oral presentation presented at AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19-22, 2013
**AAPG©2013 Serial rights given by author. For all other rights contact author directly.

¹University of Montana, Missoula, Montana (michael.hofmann@umontana.edu)
²University of Montana, Missoula, Montana

Abstract

The Devonian/Mississippian Bakken Formation is a prolific producer of hydrocarbons across much of the Williston Basin in western North Dakota and eastern Montana. The success of the Bakken play in the Williston Basin has sparked more recent interest in exploring time equivalent strata to the west in frontier areas in central and north-central Montana.

To evaluate the hydrocarbon potential of these upper Devonian and lower Mississippian rocks and to predict their distribution in Montana, we integrated results from detailed analysis of outcrops, core, geochemistry, mineralogy, and well log character.

In Montana, rocks of the Bakken and Three Forks Formations preserve a wide variety of sedimentologic characteristics that reflect complex local changes in depositional environment. Sediments are commonly intensely bioturbated, contain abundant siliciclastic detritus, and are characterized by highly variable weight percentages of organic matter and carbonate.

In general, lithofacies variability is interpreted to reflect deposition of a mixed carbonate-clastic sedimentary system within a generally oxic foreland basin to the west and a well aerated shelfal environment to the east. Taking into account the diachrony of facies belts, we infer that coarser grained siltstone facies represent proximal deposits related to prograding shoreface systems whereas finer grained mudstones were deposited contemporaneously in more distal environments sourced from local sources. Abundance of hummocky cross stratification in siltstone and very fine grained sandstone from several localities suggest that storms were an important mechanism for dispersing siliciclastic sediment in the foreland basin and across the shelf, whereas a diverse suite of trace fossils suggests subsequent reworking by a robust infauna.

Our analysis of Devonian/Mississippian outcrops in Montana suggest the presence of several sub-basins that contain organic rich mudrock intervals genetically related to coarser grained lithofacies in other parts of the basin. Based on preliminary thin-section and mineralogic
analyses, some of these sub-basins are interpreted to have a potential for hydrocarbon generation in areas outside the Williston Basin and southern Alberta Basin.

References Cited

Sandberg, C.A., M. Streel, and R.A. Scott, 1972, Comparison between conodont zonation and spore assemblages at the Devonian-Carboniferous boundary in the western and central United States and in Europe: International Congress on Carboniferous Stratigraphy and Geology, v. 7/1, p. 179-203.

Website

http://cpgeosystems.com/paleomaps.html
Sedimentology and Petroleum Potential of the Devonian/Mississippian Three Forks and Bakken Formations and Equivalent Strata in Central and Western Montana

M.H. Hofmann, M.S. Hendrix, T. Nagase
The University of Montana

Thanks to: ConocoPhillips
Montana population growth

Percent change, 2011-12

Modified from: Missoulian; Bureau of Business and Economic Research, the University of Montana-Missoula
Montana Geology
Late Devonian Paleogeography

Late Devonian
(source Baars, 1972)

(Middle) Late Devonian
(Source Blakey, 2011)
Bakken/Sappington log facies
Devonian Strata

Sources: Sandberg et al., 1972; Johnson et al., 1985; Huber, 1986; Kaufmann, 2006; Johnston et al., 2010
Bridger Range

Madison

~12m (~70ft)

Lodgepole

Sappington/Bakken

Three Forks

Jefferson
Lower Mudstone

Middle Sappington

TOC (wt %)
- 14.78
- 8.79
- 7.47
- 13.69
- 2.39
- 4.7
- 1.17
- 2.74

Gradual fining upward (decrease in silt layers)

Three Forks

cmfs

SB and fs (tsme)
Organic rich mudstone

- Sharp basal contact
- Detrital Q
- TOC: 13.69%
- Wavy tops

Facies has potential for intra-particle porosity
Organic rich mudstone
Basal mudstone

Spring Hill
14-34-27-6

1-4 Williams

Basal contact:

Erosive, Rip-up clasts,
Subaerial exposure surface

Photo courtesy USGS CRC
Oncoid silty grainstone

TOC: 0.23%

Facies has potential for moldic and intra-particle porosity
Intra-particle/Moldic Porosity
Silty vf sandstone

Coarsest facies; Potential for inter-particle porosity; dolomite fills mainly pore space.

TOC: 0.13%

high-angle x-bedding

low-angle HCS

1.0 cm
Middle Mudstone

TOC: 0.65%

TOC: 0.14%

TOC: 0.13%
Sappington - Lodgepole contact
Sappington - Lodgepole contact
Bioturbated silty mudstone

Facies has potential for inter-particle porosity in coarse silt facies

TOC: 1.72%
Upper Shale (basal contact)
Big Snowy Mtn.
Upper Shale (basal contact)
western basin (Williams 1-4)
Facies Summary

Milligan Canyon

- Foreshore
- Lower Shoreface
- Lower Shoreface/Offshore
- Lower shoreface
- Shallow marine ("Reef" slope)
- (Restricted) marine, Offshore(?)

Bridger Range

- Bay Fill?
- Lower Shoreface/Delta Front
- Bay Fill(?)
- Lower shoreface
- Middle (lower) shoreface
- Photic zone, shallow marine
- Restricted marine (lagoonal?), within storm wavebase(?)
Depositional Cycles
Thanks!