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Abstract

Relative permeability is a critical flow parameter for accurate forecasting of long-term behavior of CO; in the subsurface. In particular, for
clastic formations, small-scale (cm) bedding planes can have a significant impact on multiphase CO;-brine fluid flow, depending on the relative
permeability relationship assumed. Such small-scale differences in permeability attributable to individual bedding planes may also have a
substantial impact on predicted CO; storage capacity and long-term plume migration behavior. Relative permeability model calibration in this
study was accomplished by analyzing previously published laboratory-scale measurements of relative permeability of Berea sandstone. A core-
scale model of the flow test was created in TOUGHREACT to elucidate the best-fit relative permeability formulation that matched
experimental data. Among several functions evaluated, best-fit matches between TOUGHREACT flow results and experimental observations
were achieved with a calibrated van Genuchten-Mualem function. Using best-fit relative permeability formulations, a model of a small-scale
Navajo Sandstone reservoir was developed, implemented in TOUGHREACT with the ECO,, module. The model was one cubic meter in size,
with eight individual lithofacies of differing permeability, instigated to mimic small-scale bedding planes. The model assumes that each
lithofacies has a random permeability field, resulting in a model with heterogeneous lithofacies. Three different relative permeability functions
were then evaluated for their impact on flow results for each model, with all other parameters maintained constant. Results of this analysis
suggest that CO, plume movement and behavior are directly dependent on the specific relative permeability formulation assigned, including the
assumed irreducible saturation values of CO, and brine. Model results also illustrate that, all other aspects held constant, different relative
permeability formulations translate to significant contrasts in CO, plume behavior.
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Data for the relative permeability of CO, and water/brine for most reservoir rocks is To get a fair representation of the experimental relative permeability data for
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*Total dimensions are 1 meter by 1 meter by 0.88 meters with 10x10x12 cells Navajo Model — 50% H,0 50% CO, Navajo Model — 50% H,0 50% CO, Navajo Model — 50% H,0 50% CO,
*Cell volume of 1.0e-03 m3 for the GFOOx layers and 2.0E-04 m3 for the WRLGx Linear Curve van Genuchten — Pruess Curve van Genuchten — Krevor Curve
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WRLOx, and CLOOx layers.
*There are no injection cells in the Bedform model. There is a dummy layer at the
bottom of the model with 50% CO, saturation.
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