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Abstract

In hydrocarbon exploration and development of unconventional shale oil and gas reservoirs, the emphasis is often placed solely on organic
content, but the productivity of shale reservoirs is also highly dependent on the ability of the rock to respond effectively to hydraulic
stimulation. Considering the result of the typical extremely low-matrix permeability, higher potential gas productivity requires not only
sufficient gas-in-place, but also a brittle mineralogy amenable to hydraulic fracturing (lower clay and higher carbonate and/or silica).We
propose a quantitative method to characterize shale reservoirs in terms of both the organic richness and rock geomechanical properties. In the
Marcellus Shale and related units of the Appalachian basin, we have identified and quantified seven shale lithofacies based on mineral
composition, rock geomechanical properties, and organic-matter richness.

We develop an artificial neural network that uses a set of derived petrophysical parameters typical of shale analysis as input variables to
calibrate and train conventional logs to predict previously defined shale lithofacies based on the integration of limited core data and pulsed
neutron spectroscopy (PNS) log suites. Spatial geostatistical analysis is used to develop a series of experimental variogram models and vertical
proportion of each lithofacies in order to construct a 3-D shale lithofacies realization and a final geocellular model for the Marcellus Shale
across the Appalachian basin. The 3-D lithofacies geocellular model is used to map the organic-rich facies and brittle facies at both regional
and local spatial scales and to examine individual wells. The most productive areas and horizons of Marcellus Shale are dominated by both
organic-rich facies and brittle facies, which can be related to the regional and local geologic controls.
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Black Shale Lithofacies
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Three common methods to define shale lithofacies

< 1. Mineralogy, fabric, biota and texture
<+ e.g., Loucks and Ruppel, 2007; Hickey and Henk, 2007
< Laminated siliceous mudstone, skeletal argillaceous lime packstone

< 2. Petrophysical and geomechanical properties
<+ e.g.,Jacobi et al., 2008;
< Organic-rich shale, siliceous mudstone, carbonate mudstone
< 3. Mineral composition and organic matter richness
< e.g., Wang and Carr, 2012; Jonk et al., 2012
Two significant factors in recognizing good shale-gas reservoirs
< 1. Total Organic Carbon (TOC): related to gas content
< 2. Mineral Composition: related to shale brittleness

One key job for shale-gas reservoir characterization
< 1. Find zones with high TOC and brittle

A shale lithofacies is a laterally and vertically continuous zone
that possesses similar mineral composition, geomechanical
properties and organic-matter richness



Black Shale Lithofacies

Mineral and Crganic Matter Features

Conventional Logs Statistics
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~ Geologic § Settmg and Database
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» Structure Contour of _
Marcellus Shale Top
» Marcellus Shale
Gross Isopach
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Wireline Logging Data

Lithofacies Identification-Methodology
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Lithofacies Identification-core Scale

Shale lithofacies should focus primarily on

organic-matter richness
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Lithofacies Identification-wel Scale

Pulsed Neutron Spectroscopy Log Suite (PNS Log)
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Lithofacies Identification-wel Scale

Pulsed Neutron Spectroscopy Log Suite (PNS Log)
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Lithofacies Identification-well Scale

» Eight Derived Parameters for Marcellus Shale lithofacies
Uranium Concentration: spectral gamma ray
Vsh (or Vclay): shale volume; or Shale Brittleness index: 1-Vsh
RHOmaa: (RHOB-PHIA)/(1-PHIA) Input Variables
Umaa: (PEXRHOB-0.5PHIA)/(1-PHIA)
PHIA: average porosity of density and neutron
PHIdiff: porosity difference between density and neutron
LnRt: Deep Resistivity natural logarithm

GR/RHOB: enhance the ability to detect organic zones

Marcellus Shale Lithofacies Similarity Marcellus Shale Lithofacies Similarity
Based on the Five Conventional Logs Based on the Eight Derived Parameters
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Lithofacies Identification-well Scale
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Lithofacies Identification-well Scale
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The predicted Marcellus Shale lithofacies in wells with 5 conventional logs




3-D Lithofacies Modeling_l *Model
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One suggestlon mterpret one key structure map (Marcellus Top) in

detail and construct other formations’ structures according to the
associated isopach maps.
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TR,

Geostatistic

3-D Lithofacies Modeling | “wodeiing
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Geostatistic

3-D Lithofacies Modeling_l Modaling
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_3-D Lithofacies Modeling_l Rodclins
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3-D Lithofacies Modelin
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Productive Facies Distribution
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Productive Facies Distribution
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Productive Facies Distribution
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Productive Facies Distribution
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This model could be extended to other organic-rich shale reservoirs!
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Conclusions

» Define seven Marcellus Shale lithofacies based on three
criteria: clay volume, ratio of quartz to carbonate, and TOC:

» Classify shale lithofacies using conventional logs integrated
with core and PNS logs by artificial neural network;

» Interpret shale mineral composition by Statistic Reverse
Model and then recognize lithofacies;

» Sequence Indicator Simulation (SIS) algorithm works better
for Marcellus Shale lithofacies modeling than Indicator
Kirging and Truncated Gaussian Simulation;

» Productive facies (organic-rich and brittle) are primarily
deposited near carbonate shelf break;
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