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Abstract 

 

In hydrocarbon exploration and development of unconventional shale oil and gas reservoirs, the emphasis is often placed solely on organic 

content, but the productivity of shale reservoirs is also highly dependent on the ability of the rock to respond effectively to hydraulic 

stimulation. Considering the result of the typical extremely low-matrix permeability, higher potential gas productivity requires not only 

sufficient gas-in-place, but also a brittle mineralogy amenable to hydraulic fracturing (lower clay and higher carbonate and/or silica).We 

propose a quantitative method to characterize shale reservoirs in terms of both the organic richness and rock geomechanical properties. In the 

Marcellus Shale and related units of the Appalachian basin, we have identified and quantified seven shale lithofacies based on mineral 

composition, rock geomechanical properties, and organic-matter richness.  

 

We develop an artificial neural network that uses a set of derived petrophysical parameters typical of shale analysis as input variables to 

calibrate and train conventional logs to predict previously defined shale lithofacies based on the integration of limited core data and pulsed 

neutron spectroscopy (PNS) log suites. Spatial geostatistical analysis is used to develop a series of experimental variogram models and vertical 

proportion of each lithofacies in order to construct a 3-D shale lithofacies realization and a final geocellular model for the Marcellus Shale 

across the Appalachian basin. The 3-D lithofacies geocellular model is used to map the organic-rich facies and brittle facies at both regional 

and local spatial scales and to examine individual wells. The most productive areas and horizons of Marcellus Shale are dominated by both 

organic-rich facies and brittle facies, which can be related to the regional and local geologic controls.  
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 Three common methods to define shale lithofacies
 1. Mineralogy, fabric, biota and texture

 e.g., Loucks and Ruppel, 2007; Hickey and Henk, 2007

 Laminated siliceous mudstone, skeletal argillaceous lime packstone 

 2. Petrophysical and geomechanical properties 

 e.g., Jacobi et al., 2008;

 Organic-rich shale, siliceous mudstone, carbonate mudstone

 3. Mineral composition and organic matter richness

 e.g., Wang and Carr, 2012; Jonk et al., 2012

 Two significant factors in recognizing good shale-gas reservoirs
 1. Total Organic Carbon (TOC): related to gas content

 2. Mineral Composition: related to shale brittleness

 One key job for shale-gas reservoir characterization
 1. Find zones with high TOC and brittle

A shale lithofacies is a laterally and vertically continuous zone 
that possesses similar mineral composition, geomechanical 
properties and organic-matter richness
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 >3,880 wells with logs

 >700 wells with 5 common logs

 > 80 wells with spectral GR

 18 wells with core data

 17 wells with advanced logs

 ~200mi2 3-D seismic

 Structure Contour of 

Marcellus Shale Top

 Marcellus Shale 

Gross Isopach

Marcellus 

Shale Outcrops
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Shale lithofacies should focus primarily on geomechanical properties and 

organic-matter richness
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Core Data

Organic-rich

Organic-lean

 Criteria for shale lithofaices 

 TOC: 6.5% (wt)

 Clay Percentage: 40% (vl)

 Ratio of Quartz to Carbonate: 

3 & 1/3

Mixed

Carbonate-rich Clay-rich

Quartz-rich
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Pulsed Neutron Spectroscopy Log Suite (PNS Log)

PNS Data
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 TOC

 Clay Volume

 RQC: Ratio of Quartz to 

Carbonate

Organic-rich

Organic-lean



0<TOC<1

2<TOC<3

1<TOC<2

4<TOC<5

5<TOC<6

6<TOC<7

3<TOC<4

8<TOC<9

Quartz+Feldspar

Calcite+Dolomite Illite+Chlorite80604020

≥15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

TOC (wt %)

05-20-2013AAPG 2013 ACE in Pittsburgh9

Pulsed Neutron Spectroscopy Log Suite (PNS Log)

PNS Data
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 TOC

 Clay Volume

 RQC: Ratio of Quartz to 

Carbonate

Organic-rich

Organic-lean



 Eight Derived Parameters for Marcellus Shale lithofacies 

 Uranium Concentration: spectral gamma ray

 Vsh (or Vclay): shale volume; or Shale Brittleness index: 1-Vsh

 RHOmaa: (RHOB-PHIA)/(1-PHIA)

 Umaa: (PE×RHOB-0.5PHIA)/(1-PHIA)

 PHIA: average porosity of density and neutron

 PHIdiff: porosity difference between density and neutron

 LnRt: Deep Resistivity natural logarithm

 GR/RHOB: enhance the ability to detect organic zones
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The predicted Marcellus Shale lithofacies in wells with 5 conventional logs
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Structure 
Model

Marcellus Top

Grid Size:
 1500*1500 feet laterally

 108 layers in Marcellus Shale

One suggestion: interpret one key structure map (Marcellus Top) in 

detail and construct other formations’ structures according to the 

associated isopach maps.
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Geostatistic 
Modeling

Upper

Marcellus

Lower

Marcellus

A

A’

B

B’

C’

Indicator Kriging Truncated Gaussian Simulation Sequential Indicator Simulation

 Generates repeatable results;

 Works well with abundant 
constraint data;

 Forms sharp boundary among 
different lithofacies;

 Ignores numerous local variations

 Works well with clear ordering 
(one dimension) of lithofacies;

 Possesses Gaussian distribution;

 Produces too discrete distribution 
of lithofacies

 Loses power for 2-D/3-D ordering

 Is widely used wih no strong 
geometric pattern or clear ordering;

 Provides better realization of local 
high-frequent lithofacies;

 Makes reasonable distribution of 
Marcellus Shale;

Strength

&

Weakness
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Geostatistic 
Modeling
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Geostatistic 
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Relationship between Marcellus Shale Productive Lithofacies and Average 

Gas Production Ratio from Horizontal Wells
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Horizontal well design and 

hydrologic stimulation 

benefit from 3-D shale 

lithofacies model
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Marcellus Shale Depositional Model Based on 3-D Lithofaices Model

This model could be extended to other organic-rich shale reservoirs!



 Define seven Marcellus Shale lithofacies based on three 

criteria: clay volume, ratio of quartz to carbonate, and TOC;

 Classify shale lithofacies using conventional logs integrated 

with core and PNS logs by artificial neural network;

 Interpret shale mineral composition by Statistic Reverse 

Model and then recognize lithofacies;

 Sequence Indicator Simulation (SIS) algorithm works better 

for Marcellus Shale lithofacies modeling than Indicator 

Kirging and Truncated Gaussian Simulation;

 Productive facies (organic-rich and brittle) are primarily 

deposited near carbonate shelf break;
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