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Abstract

Drainage systems adapt to changes in the surface slope and thus have the potential to record the evolution of tectonic structures that produce
surface uplift. The development of new mountain fronts can drive the abandonment of earlier drainage networks by way of fluvial captures.
Here we analyze the evolution of topographical relief in a transcurrent tectonic setting where a relic drainage network inherited from late
Miocene extension is still preserved. The recent drainage network is advancing thanks to tectonic driven rock uplift related to the Alhama de
Murcia strike-slip fault and associated structures; overprinting the previous extensional related drainage. For this, we carried out a structural
and a qualitative and quantitative relief analysis to understand how the relief has evolved and which are the active structures that currently
control the drainage configuration. We identify river capture sites and present a geomorphic index analysis using SLk anomalies, hypsometric
curves, mountain front sinuosity, the comparison between longitudinal and projected river profiles with the SLk values and the position of
active faults and folds, and a slope analysis of the area. This analysis mainly allows the understanding of the drainage network evolution. The
results show 1) the reactivation of the ending part of the main basins by the current uplift of Tercia Range, 2) progressive capture processes
related to the growth of the Rambla de Lebor and Totana transverse drainages upon a previous drainage pattern inherited from a late Miocene
extensional setting evidenced by the presence of wind gaps, abrupt changes in flow direction, oblique relationship between current river
direction and paleosurfaces maximum slope direction and changes in the lithologic composition of terraces, and 3) basin shapes controlled by
the interference between a NE-SW-directed drainage network controlled by extensional structures and another NW-SE one controlled by
transpressive structures (Alhama de Murcia Fault).
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analysis in the Figure 1. In southeastern Betics NW-SE and NE-SW extensions were active during the
Totana and Lébor

Q3 = < ) Tortonian (Booth-Rea et al., 2004) coeval to early to late Miocene Gibrlatar arc
lerr ES d ' basins, Captures formation (Lonergan and White, 1997; Booth-Rea et al., 2007). Strike-slip activity and
folding associated to AMF probably initiated in the Pliocene (Bousquet 1979; Meijinger
and Vissers, 2006) due to tectonic inversion related to NW-SE convergence between
Africa and europe.
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Figure 2. The main geomorphic features of the studied area are controlled by two
factors: 1) features (Miocene to Middle Pleistocene alluvial fans and NE-SW
drainage system) related to inactive Miocene extensional structures, and 2)
features associated with active strike-slip faults.In the second grup: 1) a current
wind gaps and NW-SE oriented drainage system, ii) fluvial incision into Miocene to Middle
abrupt changes in Pleistocene alluvial fans, ii1) a generation of Middle Pleistocene to present-day
4 ) L g &9 = dd river direction) alluvial fans and iv) abandoned and diverted fluvial channels.
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Longitudinal profile  Figure 3. Longitudinal and projected topographic profiles
=—=Proyected profile of selected rivers (units in meters). SLk values and fault traces are
———SIK profile indicated. Except in de los Carboneros basin where the fault is parallel to

¢ Fault the basin, knick points in the topographic longitudinal profile coincide
o Tircia Eoid with SLK anomalies and/or fault trace location.
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