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Abstract

The diagenetic evolution of porosity and permeability in carbonates is complex and involves a number of independent factors. Carbonate
sediments start with 40-80% porosity and generally lose porosity with time and burial (Schmoker and Halley, 1982); however, there are many
factors that cause higher and lower porosity in carbonates of the same age and burial depth. Alteration of carbonate sediments during shallow
burial is common and includes diagenesis in seawater shortly after deposition, freshwater diagenesis during subaerial exposure, and
dolomitization in hypersaline waters. Marine (seawater) diagenesis varies with depth and carbonate saturation as is shown on Enewetak Atoll.
Aragonite and Mg-calcite cementation dominate in shallow seawater; however, aragonite is dissolved, and radiaxial calcite precipitates in
moderately deep seawater. In even deeper seawater, calcite dissolves and dolomite precipitates. Freshwater (meteoric) diagenesis and
dolomitization commonly rearrange and decrease porosity, but they also impart strength to the rock that reduces porosity loss during deeper
burial. Pennsylvanian limestones in west Texas show that prolonged subaerial exposure progressively decreases matrix porosity but increases
conduit porosity (fractures and vugs), and hence, formation permeability. Reflux dolomitization is commonly associated with carbonates in arid
climates, like the Permian of the Permian Basin. The porosity and permeability of reflux dolomites varies according to position in the
dolomitizing system with less porosity and permeability in proximal parts of the dolomitizing system. Dolomitization decreases rate of porosity
loss with burial (Schmoker and Halley, 1982), allowing some porous dolomite reservoirs like the Smackover of south Alabama at depths of
16,000-18,000 feet. Deep burial dissolution increasing porosity is the exception, rather than the rule. In summary, unlike quartzose sandstones,
a complex array of diagenetic factors generally affect the ultimate porosity, permeability, and production of carbonate reservoirs.
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EVOLUTION OF POROSITY

Modern carbonate sediments have porosities of 40%
(grainstones) to 80% micritic carbonates (Enos & Swatsky,
1981)

Carbonate reservoirs have 3-35% porosity

Most nearsurface diagenetic processes decrease and/or

rearrange porosity, but make more rigid
— Submarine,

— Subaerial exposure->meteoric diagenesis

— Dolomitization

Carbonates generally lose porosity during deeper burial

Burial history- depth, temperature and time spent at those
depths and temperatures determines rate of porosity loss

Grainstones may lose porosity more slowly than wackestones
and mudstone during early physical compaction

Nearsurface diagenesis may impart a petrologic strength that
reduces porosity loss during burial

Dolomites lose porosity more slowly with burial than most
limestones
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Carbonate Saturation decreases with depth in modern
oceans because more CO, can be held in solution allowing

more carbonate to be held in seawater
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TEMPERATURE PROFILES FROM ENEWETAK WELLS INDICATE
CIRCULATION OF SEAWATER THROUGH THE ATOLL
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Strontium isotopes (87/86) in marine carbonates vary
though time & can be used for dating & as a tracer
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Radiaxial Marine Cement Circulate into the
Platform Margin after Substantial Burial
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Dolomitization by Deep Seawater after
Substantial Burial
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Pennsylvanian Carbonate Cycles in Southwest
Andrews Area in West Texas show the Effect of
Duration of Exposure on Porosity in Carbonates

UNITED
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From Saller, A.H., J.A.D. Dickson, and F. Matsutg, 1999,
Evolution and distribution of porosity associated witf
subaerial exposure in upper Paleozoic platform limestone
west Texas: AAPG Bulletin, v. 83, p. 1835-1854
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TYPICAL SOUTHWEST ANDREWS CYCLE
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EVOLUTION OF POROSITY
DURING SUBAERIAL EXPOSURE"+

e Total porosity generally decreases
with duration of subaerial exposure

e Dissolution at the surface lowers the surface & thatCaCO moves
down and can precipitate calcite in the shallow subsurface decreasing
porosity

e Systematic changes in porosity, pore types & permeability occur
during exposure

e |[nitially primary pores are filled as secondary pores (esp. moldic
porosity) are created during early diagenesis

e Later, moldic pores are filled as vugs and fractures are created (O
less, K more)

* Prolonged exposure results in fractures & cavernous porosity with
high K, but low ©




Stage 1. Very Brief or No Exposure Stage 2. Brief to Moderate Exposure

Much Primary Porosity Much Moldic Porosity

Stage 4. Prolonged Exposure Stage 3. Moderate Exposure
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SOUTHWEST ANDREWS: NO SUBAERIAL EXPOSURE

Compaction reduces porosity in initially
porous micritic sediment with no early
lithification



SOUTHWEST ANDREWS: BRIEF SUBAERIAL EXPOSURE _7
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Brief subaerial exposure (10-30K
years?) in grainstones causes
dissolution that creates pores
(mainly moldic), and cemention that
fills pores and lithifies the rock
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SOUTHWEST
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Moderate subaerial
exposure (30-60K
years?) causes
dissolution of some
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Prolonged exposure fills most matrix pores, but creates

caves that continually form and collapse.
Total Porosity in Mature Karst Areas is commonly <3%.
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EFFECT OF DOLOMITIZATION ON POROSITY DEPENDS ON:
(A) Input of lons,
(B) Position in System/Saturation
(C) Volume of Brines Flowing Through

(1) 2CaCO; + Mg?* ----> CaMg(CO;,), + Ca?*
1 (0)
Solid volume decreases by 12% 00000 -Ca-

Dolomitization creates porosity OOOO
DOLOMITE 200000
STRUCTURE QP.QQ "%
(SCHEMATIC)
OOOO-co;

(2) Except when it doesn’t 000000 .\~

CaCO; + Mg?* + CO,* ----> CaMg(CO,) ,
Solid volume increases by 75%



Dolomitization is common in platform interiors in arid
climates. Permian of west Texas iIs a classic example.
Most of this dolomitization is probably related to
evaporated seawater formed in lagoons. That evaporated
seawater is dense, moves down and dolomitizes. (REFLUX

DOLOMITE)
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Preferential Dolomitization of Platform/ Shelf Tops of
Middle-Upper Permian Carbonates (Arid Climate)

From Saller, A.H., 2004, Palaeozoic dolomite reservoirs in the Permian Basin, SW USA: stratigraphic distribution, porosity, permeability and production, in C.J.R. Braithwaite, G. Rizzi, and
Darke, eds., The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Geological Society of London, Special Publication 235, p. 309-323.

G.



POROUS PLATFORM MARGIN

e oL

v1-91 ssow N

Porous Fusulinid
Wackest-Packstone

Nonporous
Fusulinid
Wackestone

Porosity
varies within
Dolomitizing

MUCH PRECIPITATION

Systems OF DOLOMITE
OCCLUDING POROSITY LIMESTONE
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STAGE/DURATION OF DOLOMITIZATION AFFECTS POROSITY
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Time 3. Continued Flow of Dolomitizing
Brine Precipitates Additional Dolomite in Previously
Dolomitized Areas (Zones 1 and 2) and Dolomite Replaces Limestones in Zone 3

From Saller, A.H., 2004, Palaeozoic dolomite reservoirs in the Permian Basin, SW USA: stratigraphic distribution, porosity, permeability and production, in C.J.R. Braithwaite, G. Rizzi, and G.
Darke, eds., The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Geological Society of London, Special Publication 235, p. 309-323.
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Highest Oil Production occurred where high porosity platform margin dolomites
are above the oil/water contact From Saller & Henderson, 1998



Diagenetic Evolution of Porosity in
Carbonates during Burial

Introduction
Marine Diagenesis - Enewetak

Freshwater Diagenesis — Pennsylvanian,
West Texas

Dolomitization — Permian, West Texas
Deep Burial — Florida/ South Alabama



LOSS OF POROSITY WITH DEEPER BURIAL

e Physical (plastic) compaction
e Chemical compaction (pressure solution)

e Cementation



Physical (plastic) compaction  Grainstone will also

— Carbonate muds start with ~80% compact, but more slowly
porosity (Enos & Swatsky, 1981)

— Without early lithification,
they will compact until they
have no effective porosity

Ooid Grainstone; Jurassic Smackover Fm;
~10,000 feet deep; Plastic Deformation &

Grain-to-Grain Pressure Solution




LOSS OF POROSITY WITH BURIAL

e Physical (plastic) compaction

e Chemical compaction
(pressure solution)

Burial cements are commonly
derived from pressure solution

e Cementation

Burial Cement; Smackover
"'10,000 feet (from C.H. Moore)



Rate of Porosity Loss Depends Upper Jurassic Smackover dolomite
on Pressure, Temperature & Time with 10-15% porosity, West Florida

O BPC Scott Paper#l
w
2
4 - 2
—z
E 6 L MORE THAN 75% ::"
E LIMESTONE -
S 8| =
S . g
> ), -
I 10 B i n
e =
o =
L =l
012 ! YMORE THAN 75% 3
' DOLOMITE —
14| [ =
" E
- o
18 |- }b
from Schmoker & Halley,1982 —
20 |

0 10 20 30 40 50
% POROSITY

Early dolomitization causes lithification that
decreases porosity loss with burial
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Carbonate dissolution during deep

burial can create porosity.

-Acidic waters can be expelled from
organic-rich shale

-Dissolution is commonly associated
with “hydrothermal dolomite”

Reddish drilling mud fills vugs
created during dissolution during
deep burial at the margins of an
Oligocene platform

From Saller, A.H., and Suta Vijaya, 2002, Depositional and diagenetic history
of the Kerendan carbonate platform, Oligocene, central Kalimantan,
Indonesia; Journal of Petroleum Geology, v. 25, p. 123-150.
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