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Abstract 

 
The diagenetic evolution of porosity and permeability in carbonates is complex and involves a number of independent factors. Carbonate 
sediments start with 40-80% porosity and generally lose porosity with time and burial (Schmoker and Halley, 1982); however, there are many 
factors that cause higher and lower porosity in carbonates of the same age and burial depth. Alteration of carbonate sediments during shallow 
burial is common and includes diagenesis in seawater shortly after deposition, freshwater diagenesis during subaerial exposure, and 
dolomitization in hypersaline waters. Marine (seawater) diagenesis varies with depth and carbonate saturation as is shown on Enewetak Atoll. 
Aragonite and Mg-calcite cementation dominate in shallow seawater; however, aragonite is dissolved, and radiaxial calcite precipitates in 
moderately deep seawater. In even deeper seawater, calcite dissolves and dolomite precipitates. Freshwater (meteoric) diagenesis and 
dolomitization commonly rearrange and decrease porosity, but they also impart strength to the rock that reduces porosity loss during deeper 
burial. Pennsylvanian limestones in west Texas show that prolonged subaerial exposure progressively decreases matrix porosity but increases 
conduit porosity (fractures and vugs), and hence, formation permeability. Reflux dolomitization is commonly associated with carbonates in arid 
climates, like the Permian of the Permian Basin. The porosity and permeability of reflux dolomites varies according to position in the 
dolomitizing system with less porosity and permeability in proximal parts of the dolomitizing system. Dolomitization decreases rate of porosity 
loss with burial (Schmoker and Halley, 1982), allowing some porous dolomite reservoirs like the Smackover of south Alabama at depths of 
16,000-18,000 feet. Deep burial dissolution increasing porosity is the exception, rather than the rule. In summary, unlike quartzose sandstones, 
a complex array of diagenetic factors generally affect the ultimate porosity, permeability, and production of carbonate reservoirs. 
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• Modern carbonate sediments have porosities of 40% 
(grainstones) to 80% micritic carbonates (Enos & Swatsky, 
1981) 

• Carbonate reservoirs have 3-35% porosity 
• Most nearsurface diagenetic processes decrease and/or 

rearrange porosity, but make more rigid  
– Submarine,  
– Subaerial exposure->meteoric diagenesis 
– Dolomitization 

• Carbonates generally lose porosity during deeper burial 
• Burial history- depth, temperature and time spent at those 

depths and temperatures determines rate of porosity loss 
• Grainstones may lose porosity more slowly than wackestones 

and mudstone during early physical compaction 
• Nearsurface diagenesis may impart a petrologic strength that 

reduces porosity loss during burial 
• Dolomites lose porosity more slowly with burial than most 

limestones 
 

EVOLUTION OF POROSITY 



POROSITY 
GENERALLY 

DECREASES WITH 
DEPTH 

With much variation 
related to deposition & 

early diagenesis 
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From Schmoker, J.W. and R.B. Halley, 1982, Carbonate 
Porosity Versus Depth: A predictable Relation for South 
Florida: AAPG Bulletin, v.66, p.2561-2570. 
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West Texas 
• Dolomitization – Permian, West Texas 
• Deep Burial – Florida/ South Alabama 



(from C.H. Moore) 

Deep Holocene 
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Shallow marine to tidal flat cycles 

CAPITAN: PROGRADING  
SHELF MARGIN SYSTEM 

Submarine Cementation can Substantially 
Reduce Depositional Porosity in Reefs 

Calcitized Botryoidal Cement, Capitan Formation, 
Permian West Texas. Submarine cements precipitate 
where seawater pumps through reefs & grainstones. 



DEEP MARINE DIAGENESIS, ENEWETAK ATOLL 

From Saller, A. H. and R. B. Koepnick, 1990, 
Eocene to early Miocene growth of Enewetak Atoll: 
Insight from strontium-isotope data: Geological 
Society of America Bulletin, v. 102, p. 381-390. 



Carbonate Saturation decreases with depth in modern 
oceans because more CO2 can be held in solution allowing 

more carbonate to be held in seawater 

OLIGOCENE 

(from Saller and Koepnick, 1990) 

Aragonite 

Dolomite 



TEMPERATURE PROFILES FROM ENEWETAK WELLS INDICATE 
CIRCULATION OF SEAWATER THROUGH THE ATOLL 

Warming due to 
geothermal heat 
flow near the 
basment 

Wells are cool 
because cool 
sea water is 
circulating 
through atoll 

(from Saller and Koepnick, 1990) 



Beachrock on Enewetak is 
Marine Cemented Grainstones 

that has Cemented WW II 
Artifacts 

(from C.H. Moore, 1970s) 

(from Saller and Moore, 1989) 



Dissolved, cemented Coral 

Equant, Marine Calcite Cement 

Oligocene, Enewatak 
~2000 feet 

(Saller and Koepnick, 1990) 

CALCITE ZONE 



Calcite Dissolution & 
Dolomitization by deep seawater, 
Eocene, Enewetak ~ 4200’ Deep 

From Saller, A. H., 1984, Petrological and geochemical constraints on the 
origin of subsurface dolomite, Enewetak Atoll: An example of dolomitization by 
normal seawater: Geology, v. 12, p. 217-220. 



Strontium isotopes (87/86) in marine carbonates vary 
though time & can be used for dating & as a tracer 

Strontium Isotopes in Seawater through Time 

87
Sr

/86
Sr

 

Eocene strata with depositional 87Sr/86Sr  = 0.70767-0.70777 

Oligo-Miocene 
Limestone with Oligo-
Miocene Sr Isotopes 

From Burke et al. 1982 (from Saller and Koepnick, 1990) 



Marine Calcite Cements 
& Dolomites have 

distinctly younger Sr 
indicating precipitation 
after substantial burial 
by seawater  circulating 
through the margin of 

the atoll 

Depositional Sr 

Marine 
Cements 

Dolomite 

from Halley et al., 1986 
0 5 23 34  Ma 

(from Saller and Koepnick, 1990) 



Radiaxial Marine Cement Circulate into the 
Platform Margin after Substantial Burial 

Common Marine Cement 

(from Saller and Koepnick, 1990) 



Dolomite 87Sr/86Sr = 
0.70855-0.70901 

Deep 
Dolomitizing 

Seawater 

Dolomitization by Deep Seawater after 
Substantial Burial 
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UPPER PENNSYLVANIAN PALEOGEOGRAPHY 

Pennsylvanian Carbonate Cycles in Southwest 
Andrews Area in West Texas show the Effect of 
Duration of Exposure on Porosity in Carbonates 

From Saller, A.H., J.A.D. Dickson, and F. Matsuda, 1999, 
Evolution and distribution of porosity associated with 
subaerial exposure in upper Paleozoic platform limestones, 
west Texas: AAPG Bulletin, v. 83, p. 1835-1854  
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From Saller, A.H., 2004, Palaeozoic dolomite reservoirs in the Permian Basin, SW USA: stratigraphic distribution, porosity, permeability and production, in C.J.R. Braithwaite, G. Rizzi, and G. 
Darke, eds., The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Geological Society of London, Special Publication 235, p. 309-323.  



Alternate between deposition 
& subaerial exposure 

A) INITIAL FLOODING OF SHELF 

B) DEVELOPMENT OF SHOALS C) SEA LEVEL DROP & EXPOSURE 

~90 cycles: Frequency ~110 ky  

From Saller, A.H., J.A.D. Dickson, and S.A. Boyd, 1994, Cycle stratigraphy and porosity in Pennsylvanian and lower Permian shelf limestones, eastern Central 
Basin Platform, Texas: AAPG Bulletin, v. 78, p. 1820-1842.  



EVOLUTION OF POROSITY 
DURING SUBAERIAL EXPOSURE 

• Total porosity generally decreases 
with duration of subaerial exposure 

• Dissolution at the surface lowers the surface, & that CaCO3 moves 
down and can precipitate calcite in the shallow subsurface decreasing 
porosity 

• Systematic changes in porosity, pore types & permeability occur 
during exposure 

• Initially primary pores are filled as secondary  pores (esp. moldic 
porosity) are created during early diagenesis 

• Later, moldic pores are filled as vugs and fractures are created (Φ 
less, K more) 

• Prolonged exposure results in fractures & cavernous porosity with 
high K, but low Φ 



Much Primary Porosity Much Moldic Porosity 

Moldic, Vuggy & Fracture Porosity Minor Vuggy & Fracture Porosity 
From Saller, A.H., J.A.D. Dickson, and F. Matsuda, 1999, Evolution and distribution of porosity associated with subaerial exposure in upper Paleozoic platform limestones, 
west Texas: AAPG Bulletin, v. 83, p. 1835-1854  



SOUTHWEST ANDREWS:   NO SUBAERIAL EXPOSURE 

Compaction reduces porosity in initially 
porous micritic sediment with no early 
lithification  



SOUTHWEST ANDREWS: BRIEF SUBAERIAL EXPOSURE 

Exposure 
Surface 

Fossil 
Root 

Porosity - blue 
Oomoldic porosity (m) 

Brief subaerial exposure (10-30K 
years?) in grainstones causes 
dissolution that creates pores 
(mainly moldic), and cemention that 
fills pores and lithifies the rock 

Packstone-Grainstones 

Porosity ~15% 
Permeability ~1 mD 



SOUTHWEST  
ANDREWS  

Moderate subaerial 
exposure (30-60K 
years?) causes 
dissolution of some 
conduit pores and 
more cementation 
resulting in decreased 
porosity, but increased  
permeability 

Porosity ~10%; Permeability ~10 mD 



SW ANDREWS:  
PROLONGED  

EXPOSURE IN/NEAR 
SOIL ZONE 

Shaley material (s) 
fills between 
breccia clasts. 
Iron-rich burial 
cements fill other 
pores.  



MORE INTENSE 
EXPOSURE 

Subaerial Exposure 

Brief 

Cycle Tops 
Little/ no 

Brief 

Moderate 

Long 

Saller, A.H., J.A.D. Dickson, E.T. Rasbury, and T. Ebato, 1999, Effects of long-term accommodation change on short-term cycles, upper Paleozoic 
platform limestones, west Texas, in P.M. Harris, A.H. Saller, and J.A. Simo, eds., Advances in Carbonate Sequence Stratigraphy: Application to 
Reservoirs, Outcrops, and Models: SEPM (Society for Sedimentary Geology) Special Publication No. 63, p. 227-246. 



POROSITY: 
UPPER 
PENN. 

SW 
ANDREWS 

Thinner cycle 
=  

Longer 
Exposure 

Grainstones 

Platform Margin 

Platform Interior 
Thin cycles 

From Saller, A.H., J.A.D. 
Dickson, and F. Matsuda, 
1999, Evolution and 
distribution of porosity 
associated with subaerial 
exposure in upper Paleozoic 
platform limestones, west 
Texas: AAPG Bulletin, v. 83, p. 
1835-1854  



Collapse 

Sediment around collapse cave clasts 

Prolonged exposure fills most matrix pores, but creates 
caves that continually form and collapse. 
Total Porosity in Mature Karst Areas is commonly <3%. 
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EFFECT OF DOLOMITIZATION ON POROSITY DEPENDS ON: 
 (A) Input of Ions,  
 (B) Position in System/Saturation  
 (C) Volume of Brines Flowing Through 
 

 
(2) Except when it doesn’t                                             
 CaCO3 + Mg2+ + CO3

2-  ---->   CaMg(CO3) 2      
  Solid volume increases by 75%  

(1) 2CaCO3 + Mg2+ ---->  CaMg(CO3)2 + Ca2+    
 Solid volume decreases by 12%  
 Dolomitization creates porosity  



Cross  
Section 

Dolomitization is common in platform interiors in arid 
climates. Permian of west Texas is a classic example.  
Most of this dolomitization is probably related to 
evaporated seawater formed in lagoons. That evaporated 
seawater is dense, moves down and dolomitizes. (REFLUX 
DOLOMITE) 
 



Preferential Dolomitization of Platform/ Shelf Tops of  
Middle-Upper Permian Carbonates (Arid Climate) 

WEST 

EAST EASTERN CENTRAL BASIN PLATFORM 

MISSISSIPPIAN 

From Saller, 2004 

Central 
Basin 

Platform Midland 
Basin 

From Saller, A.H., 2004, Palaeozoic dolomite reservoirs in the Permian Basin, SW USA: stratigraphic distribution, porosity, permeability and production, in C.J.R. Braithwaite, G. Rizzi, and G. 
Darke, eds., The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Geological Society of London, Special Publication 235, p. 309-323.  
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Porous Fusulinid 
Wackest-Packstone 

Porous Peloid 
Wackest-Packstone 

Porosity 
varies within 
Dolomitizing 
Systems 
From Saller, A.H. and N. Henderson, 1998, Distribution of porosity and 
permeability in platform dolomites: insight from the Permian of west 
Texas: AAPG Bulletin, v. 82, p. 1528-1550.  
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West 
Platform Interior 

East 
Platform Margin South Cowden Field 

Porosity in dolomite increases  
from Platform Interior toward Margin,  

but is not controlled by facies 
 

From Saller & Henderson, 1998 



STAGE/DURATION OF DOLOMITIZATION AFFECTS POROSITY 

Overdolomite 

Platform 
Interior Basin 

From Saller, A.H., 2004, Palaeozoic dolomite reservoirs in the Permian Basin, SW USA: stratigraphic distribution, porosity, permeability and production, in C.J.R. Braithwaite, G. Rizzi, and G. 
Darke, eds., The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Geological Society of London, Special Publication 235, p. 309-323.  



Highest Oil Production occurred where high porosity platform margin dolomites 
are above the oil/water contact  

Structural 
High 

From Saller & Henderson, 1998 
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LOSS OF POROSITY WITH DEEPER BURIAL 

• Physical (plastic) compaction 
• Chemical compaction (pressure solution) 
• Cementation 

 



• Physical (plastic) compaction 
– Carbonate muds start with ~80% 

porosity (Enos & Swatsky, 1981) 
– Without early lithification,  
 they will compact until they  
  have no effective porosity 

Note flattening of 
burrow-fills due to 
compaction of 
carbonate mud 

Ooid Grainstone; Jurassic Smackover Fm; 
~10,000 feet deep; Plastic Deformation & 
Grain-to-Grain Pressure Solution 
 

Grainstone will also 
compact, but more slowly 



LOSS OF POROSITY WITH BURIAL 
• Physical (plastic) compaction 
• Chemical compaction 

(pressure solution) 
• Cementation 

Burial Cement; Smackover  
~10,000 feet (from C.H. Moore) 

Burial cements are commonly 
derived from pressure solution 
of adjacent strata  



Upper Jurassic Smackover dolomite 
with 10-15% porosity, west Florida 

Early dolomitization causes lithification that 
decreases porosity loss with burial 

Rate of Porosity Loss Depends 
on Pressure, Temperature & Time 

from Schmoker & Halley,1982  



Carbonate dissolution during deep 
burial can create porosity.   
-Acidic waters can be expelled from 
 organic-rich shale 
-Dissolution is commonly associated 
 with “hydrothermal dolomite” 

Reddish drilling mud fills vugs 
created during dissolution during 
deep burial at the margins of an 
Oligocene platform Coral 

BURIAL 
DISSOLUTION 

Kerendan Platform 
Oligocene, Borneo 

From Saller, A.H., and Suta Vijaya, 2002, Depositional and diagenetic history 
of the Kerendan carbonate platform, Oligocene, central Kalimantan, 
Indonesia: Journal of Petroleum Geology, v. 25, p. 123-150.  

Drawn by Tom Elliott 
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GENERALLY 

DECREASES WITH 
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With much variation 
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& time 
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From Schmoker, J.W. and R.B. Halley, 1982, Carbonate 
Porosity Versus Depth: A predictable Relation for South 
Florida: AAPG Bulletin, v.66, p.2561-2570. 
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