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Abstract

To optimally stimulate an unconventional reservoir hydraulically, it is important to identify brittle regions based on knowledge of the geology,
petrophysics, mineralogy, and rock mechanics of the area of study. This research reconciles some of the brittleness terminology in the literature
and classifies the Barnett Shale in terms of its geomechanical properties, defining the more-brittle regions in Young's modulus and Poisson's
ratio crossplots and Ap - pp space. These geomechanical properties were defined, calibrated, and computed using specialized logging tools such
as: mineralogy, density, and P- and S-wave sonic logs, and calibrated to previous core descriptions and laboratory measurements. With proper
calibration these measurements provide a means to geomechanically characterize a reservoir.

In the Barnett Shale, the combination of high concentrations of quartz and calcite gives rise to more brittle rocks, while ductility is controlled
primarily by clay content. Contrary to the commonly held understanding, in the Barnett increased kerogen (TOC) does not make the rock more
ductile. Further, microseismic event locations from a 3D seismic survey acquired after more than 400 wells have been drilled and hydraulically
fractured in the area agree to the predicted brittle regions in the Ap - pp crossplot, suggesting that hydraulically induced fractures preferentially
populate brittle regions and consequently, produce more gas. Thus, these results are useful to calibrate 3D seismic attribute brittleness
estimation.
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In a geological sense, in a conventional
reservoir the hydrocarbon generated by a
kerogen-rich rock migrates naturally and is
stored by buoyant forces into the porous
space of a reservoir rock, and subsequently
is trapped by an impermeable seal. This
geological definition of a petroleum system
differentiates three rock types: source,
reservoir and seal.

UNCONVENTIONAL

An unconventional reservoir is one where one
single rock combines the previous rock
characteristics, and the hydrocarbon storage
in the rock pores (typically natural gas) does
not flow naturally due to the low (> $ 0.1 mD)
rock permeability. Many of these low-
permeability rocks are shale and tight
sandstone, but currently significant amounts of
gas are also produced from low-permeability
carbonates and coal bed methane.

Reservoir

BARNETT SHALE:

Low permeability* (<0.1 mD)
Low porosity* (6%)

High TOC*

*Average values corresponding to the
Barnett Shale
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Shale play:

The proliferation of the exploration activity into new shale plays has
increased the shale gas resources in the U.S. from 1 from 2006 to 336 TCF
in August 2011. In this dissertation we will focus on the Barnett Shale,
located in the Fort Worth Basin (Texas).

1 TICF** 336 TICF**

| |
2006 2011

“Trillion dubic feet
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Due to the low permeability, it is necessary apply enhanced recovery techniques, such
as hydraulic fracture stimulation or steam injection to extract the gas molecules from
the rock matrix and achieve gas production.

Finding areas In the shale play that are “brittle” is important in the
development of a fracture fairway large enough to connect the
highest amount of “rock volume” during the hydraulic —
fracturing process.
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OBJECTIVES

e Previous work (Thompson, 2010; Zhang, 2010) has
shown that seismic impedance, curvature, and other
erformance

d : 6000 ft

Relative EUR value co-rendered with most positive Anisotropy intensity with polygons of microseismic events from six experiments.
curvature (Thompson, 2010) Notice the micro-seismic events appear in areas of low anisotropy intensity.
(Zhang, 2010)

e Can | link seismic data measurements such as prestack
seismic inversion attributes, microseismic event location
and magnitude, and most important, EUR, to reservoir
performance? 6
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BRITTLE

BRITTLENESS is the
measurement of stored
energy before failure, and is
function of:

Rock strength
lithology
texture
effective stress
temperature
fluid type

diagenesis
TOC

BRITTLENESS INDEX (Bl) is
the most widely used

parameter for the quantification |

of rock brittleness.

Fracture

Ductile

Strain

Higher the magnitude of the
Bl, the more brittle the rock
IS

If the rock has a large region of elastic behavior but
only a small region of ductile behavior the rock is
considered brittle. In contrast, If the material under
stress has a small region of elastic behavior and a
large region of ductile behavior, absorbing much
energy before failure, it is considered ductile
(opposite of brittle).




BRITTLENESS

How do to quantify brittleness
1) Mineralogy??
2) Elastic parameters??

MINERALOGY BRITTLENESS

Q=
farvie(2007) — m

, Qz+ Dol
SIWang(2009) A Dol + Ca + Cly + TOC

GEOLOGY GEOMECHANICAL

ELASTIC
PARAMETERS
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Gamma ray, GRP, and mineralogy logs corresponding to Well A. The brittleness index logs are calculated using Jarvie et al. (2007) (track 9) and
Wang and Gale (2009) (track 10). Track 11 shows the classification results, where brittle (red) and more brittle zones (orange) are associated
with high quartz and TOC content zones.
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Reworked shelly deposit
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deposit

Singh (2008) Gamma Ray
API

Gamma ray (GR) vs. brittleness index (BI) corresponding to Well A (using Wang and Gale’s (2009) equation color-coded by total organic
carbon (TOC) content, and Singh (2008) Barnett Shale lithofacies definition ranked in relation to interpreted relative bottom oxygenation and
organic richness. Brittle (red), less brittle (orange), less ductile (yellow), and ductile (green) classification proposed (classification results are
shown in track 11 on previous slice.
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(Elastic parameters)
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a) Set of elastic logs corresponding to Well A, b) Poisson'’s ratio vs. Young’s modulus crossplot indicating empirically defined ductile-brittle regions, and the
expected fracture pathway geometry (modified from Grieser and Bray, 2007), (c) the Poisson’s ratio vs. Young's modulus values corresponding to formations in

Well A overplotted by Grieser and Bray's (2007) ductile (green)-brittle (red) regions color-coded with brittleness index from ECS mineralogy analysis.
Classification results are shown in track 13.




Upper and Lower Barnett Shale Upper and Lower Barnett Shale
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Young’s modulus
Young’s modulus
[GPa)

Poisson’s ratio . Poisson’s ratio . Poisson’s ratio

(a) (b) (c)

Poisson’s ratio vs. Young's modulus crossplot (a) corresponding to each formation in the study area. (b) Poisson’s ratio vs. Young’s
modulus crossplot corresponding to Upper and Lower Barnett Shale color-coded by brittleness index (BI), overlapped by a
proposed brittle/ductile classification, and (c) the proposed classification.
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Young's . , .
J Poisson’s ratio

’1+2
p

P-wave S-wave
Velocity Velocity

M=A+2u

P-wave Modulus
E

(4w

Mu (Lame moduli) - rigidity and Lambda allow the fundamental parametrization of seismic waves used to extract information about rocks in the
earth. These parameters link many fields of earth science, from petroleum exploration to earthquake seismology. Some contradictions are
removed by restating equations using Lame parameters.

A
V= ——
Young - Poisson Relation (22 + 2p)

1+v
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e Extracted A - y from each microseismic event location
corresponding to (a) Well C and (b) Well D. (c) A - u
crossplot from the area around the well. Comparing
the microseismic events distribution to those in (a)
and (b) shows that the majority of microseismic
events occurs in the area that | define as brittle (red)

and less brittle (orange).

[GPa][g/cm’]
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(a) Lateral view and (b)
microseismic vertical

Upper Bamett S (depth) histograms,
gamma ray, brittleness
index log, and Bl
classification (brittle (red),
less brittle (orange), less
ductile (yellow), and ductile
(green)) corresponding to
individual stages

of microseismic event
locations corresponding to
Well C. Vertical histogram
shows a decrease in
events recorded in the
upper section of the Lower
Barnett Shale toward the
Forestburg Limestone,
possibly due to the
increment in clay minerals
and therefore ductility,
creating a ductile zone.
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Goodway (2007)
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Vertical slices A - A’ through (a) A and (b) p seismic volumes and their corresponding histograms. Notice that the shale formations

exhibit lower values of A and u (red and yellow) than the limestone formations (cyan and blue). Location of the line is shown in slice
22. (c) A - u crossplot color-coded by gamma ray from logs indicating that shale formations exhibit low A and low p. (d) Gamma ray
vs. brittleness index indicating that in the Barnett Shale high gamma ray values represent high brittleness and TOC, confirming the

core analysis by Singh (2008).
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Vertical slices B - B’ through (a) A and (b) ¢ seismic volumes and (c) through the crossplotted A vs. p volumes using a (d) 2D colorbar (location of line B - B’ is
shown in next slice). The range of the 2D colorbar enhances the differences between quartz- (yellow and red), clay (green), and limestone (magenta, blue, and

purple) -rich formations, providing an estimate of lithology and geomechanical behavior.
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Map view of microseismic event locations corresponding to (a) Well C and (b) Well D the orientation of the fracture lineaments formed by the microseismic events align with the current maximum
horizontal stress direction in the Fort Worth Basin (NE-SW). (c) Horizon slice along the top Viola Limestone through the most positive curvature seismic attribute volume. The majority of the
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anisotropy while the direction indicates the azimuth of maximum anisotropy (modified from Thompson, 2010). The seismic data were acquired after 400 wells stimulated, such that the velocity
anisotropy represents the post-frack stress regime.

Microseismic events trend towards negative curvature values (green) avoiding the most positive
curvature zones (orange) and follow the velocity anisotropy trend, previously described by
Thompson (2010) and Browning (2006).
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The majority of the microseismic events are located in zone of low anisotropy strength, suggesting
that the rock “relax” after being fractured.
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CONCLUSIONS

« Well calibration is key to have a accurate interpretation of
the rock brittleness.

o 2D color-bars are very useful to visualize cross-plot
volumes.

* Microseismic is an indirect method to evaluate the
hydraulic stimulation in the reservaorr.

* Microseismic events

e trend towards quartz rich areas, avoiding clay rich
zones.

« trend towards negative curvature values (green)
avoiding the most positive curvature zones (orange)
and follow the velocity anisotropy trend.

e are located in zone of low anisotropy strength,
suggesting that the rock “relax” after being fractured.
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