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Abstract

We are conducting laboratory experiments on gas shales samples examining the effects of confining stress, pore pressure and pore fluid type on
permeability. Experiments were carried out on intact core plugs from the Eagle Ford, Haynesville, Marcellus, Montney and Barnett shale
reservoirs. We developed a methodology to separate the decrease of permeability with increasing effective stress (the difference between
hydrostatic confining pressure and pore pressure) and the increase of permeability at very low pore pressure due to molecular slippage effects.
These effects are also known as Knudsen diffusion or Klinkenberg effects. In addition, by isolating the Klinkenberg effect we are able to
estimate the effective size of the flow paths within each sample. Our measurements show that the permeability of the rock is significantly
enhanced at low pore pressures (<1000 psi) due to slippage effects. Preliminary results suggest the effective flow paths of the samples
investigated are on the order of tens of nanometers to about 100 nanometers in a high-permeability sample. These results are in close
agreements with pore size estimates from SEM images. From the magnitude of the Klinkenberg gas slippage effect, an effective Knudsen
diffusivity was also calculated. These estimates can be used in reservoir simulation to more accurately predict the long-time production
behavior of these shales. Finally, the relative contribution of Knudsen Diffusion to total flow is calculated. We show that the contribution is
likely to be negligible at initial reservoir pressures, but becomes increasingly more important as flowing pressure declines
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talk outline

 Research motivation and background
 Laboratory apparatus and procedure

J Results
= Permeability effective stress law (6 samples)
= Magnitude of the Klinkenberg effect (3 samples)
= Pore width estimates (3 samples)
= Relative contribution of diffusion and Darcy flow (3 samples)

d Summary and conclusions




research motivation: flat production tails?
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QO Monthly incremental production from groups of wells drilled in the Barnett Shale in
2004, 2005 and 2006

0 Production peaks higher due to better completions methods and technology

O All curves exhibit similar production tails, characterized by relatively flat, plateau-like
production
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research motivation: matrix permeability

Conceptual model for flow in gas shales

= Multiple scales of porosity and
permeability exist, all potentially
evolving with time during production

= This study focuses specifically on
flow through the matrix

Desorption From Flow Through Flow Through
Internal Surfaces Intact Matrix ~ Fracture Network
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research motivation: matrix permeability

Conceptual model for flow in gas shales

Desorption From Flow Through Flo = Pore:size
Internal Surfaces Intact Matrix ~ Fracture Netwe 2190 10's of nm
Image from Sondergeld, et al.
2010

1. How does matrix permeability evolve during production?
+ Stress effects
+ Flow regime effects

Research motivation & background




matrix permeability influenced by: 5
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Presenter’s notes: Under steady state and laminar flow condition, Klinkenberg demonstrated that the permeability to gases is approximately a linear

function of the reciprocal pressure.
However, Klinkenberg’s formulation ignores the transition flow region, where neither molecule-molecule nor molecule-wall interactions can be

neglected because both are playing relevant roles.



Under what conditions is slip flow important?
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permeability system setup

Gas QX-6000 Pump Hydrostatic Pressure
Cylinder Pressure Vessel  Generator

Laboratory apparatus & procedure




sequence of confining pressure and pore pressure steps
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Presenter’s notes: Techniques to formalize an effective stress law for low permeability rocks have been well established.
Chi determines the relative sensitivity of permeability to changes in confining pressure and pore pressure.



sequence of confining pressure and pore pressure steps
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Presenter’s notes: Techniques to formalize an effective stress law for low permeability rocks have been well established.
Chi determines the relative sensitivity of permeability to changes in confining pressure and pore pressure.



sequence of confining pressure and pore pressure steps
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Presenter’s notes: Techniques to formalize an effective stress law for low permeability rocks have been well established.
Chi determines the relative sensitivity of permeability to changes in confining pressure and pore pressure.



pulse permeability method
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experimental notes '3

= Samples were subjected to a hydrostatic stress of 6000 psi for 48-72
hours prior to each experiment

= 2 data points/day = ~60 points per experiment = ~1 month/sample

= Significant effort to minimize system leaks were made, including:
= Fitting adjustment
= Infinite upstream volume boundary condition
= Relatively large downstream volume to minimize loss of pressure from
leaks

= Measurement repeatability was monitored
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summary of samples measured
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permeability vs. Cp — Pp
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* For a given “simple”
effective stress,
permeability
measurements made
at high pore
pressures more
permeable




permeability vs. Co — xPp
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* For each rock,
successfully fit all
measurements to a
single trend

+ All rocks are more
sensitive to confining
stress than pore
pressure

« So far, for each rock,
we've been able to
explain all permeability
variation with stress
effects

*What about lower pore
pressures?




permeability vs. Co — xPp
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* For each rock,
successfully fit all
measurements to a
single trend

+ All rocks are more
sensitive to confining
stress than pore
pressure

« So far, for each rock,
we've been able to
explain all permeability
variation with stress
effects

*What about lower pore
pressures?




permeability vs. Cp — XPp
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permeability vs. Cp — XPp
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permeability vs. Cp — XPp

Permeabiiity (nD)
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permeability vs. Cp — XPp

Permeability (nD)
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effective pore size from Klinkenberg slope

w'P

Assumptions: =
12uL

= Total mass flow is sum of
viscous (Darcy) flow and
Knudsen/slip flow

= Slit shaped pore geometry

= Model viscous flow using k
Poiseuille equation

0

yrocedure | Results
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effective pore size vs. effective stress

140

—— % = P i Pore size
1201 oy 100-200 nm

- "y
100 —e—Eagle Ford 127 |

—&— Marcellus
80 —4—Eagle Ford 174 |-

Effective Pore Width (nm)

0
2000 2500 3000 3500 4000
Effective Stress (psi)

e

= Pore width decreases with increasing
effective stress

= Pore widths range from 20-40nmin
Marcellus samples, ~130nm in Eagle Ford

= Klinkenberg pore sizes consistent with
SEM images

Results




To what extent does Knudsen diffusion contribute to flow? o4
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summary of what has been presented: oe

1. Measured permeability over a wide range of pore pressure/confining
pressure combinations

2. Determined permeability-effective stress law using measurements
made at high pore pressures

3. Plotted permeability vs. effective stress for all data; low pore
pressures deviated from trend =» created Klinkenberg plot for three
effective stresses

4. Used magnitude of Klinkenberg effect to interpret effective pore
widths and estimate contribution of slip flow relative to Darcy flow
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conclusions
26

Q Permeability and effective stress:
= x <1, indicating that samples are more sensitive to changes in
confining stress than pore pressure

Q Klinkenberg effect:
= Gas slippage seems to enhance permeability at low pore pressure
= Effective pore widths are estimated to be 10-150nm, consistent
with SEM images
= At low pore pressures, Knudsen diffusion (or “slip flow") becomes
increasingly more important, in some cases surpassing Darcy flow
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