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Abstract

Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and
permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing
fracture network heterogeneity is therefore essential in order to understand and predict fluid flow in fractured reservoirs, but this cannot be
accomplished using only 1D data from wells, which is usually the only type of data available from the subsurface.

To extend the 1D data to 3D data we commonly analyze the regional deformation, as different types of fold mechanisms produce different
deformation styles and subsequent fracture patterns. 2D outcrop studies of fractures are often used to quantify these multi-scale relations
between fracturing and large-scale structures.

We build a geometric model, then make a mechanical analysis, followed by populating the fracture domains with outcrop-derived information.
We use a novel approach called Digifract, which allows us to collect large amounts of 2D fracture data from outcrops, including fracture size,
orientation and spacing measurements. Using this method we accurately quantify the links between multi-scale deformations, from fractures to
regional tectonics.

We applied the Digifract method in the outermost foothills of the Southern Tunisian Atlas, analysing fractures in different domains of four
external folds with simple geometries and deformation histories. The lithology of the outcropping cores of all anticlines consists of the same
fractured carbonates. The dimensions of the folds are on the same scale as reservoir analogs and form analogs for reservoirs in the
Ghadames/Illizi basin, covering parts of Algeria, Tunisia and Libya.

We relate differences in fracture characteristics to different localities (e.g., far or close to fold axes) and different folding stages in order to
derive general rules that can be applied to subsurface fold analogs.
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Quantifying fracture heterogeneity in different domains of folded carbonate rocks to
improve fractured reservoir analog fluid flow models
From surface analog to subsurface predictions
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Outcrops providing key understanding of fracture
geometry and spacing, which lacks from well data
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Geological setting
of the outcropping analog and subsurface basin
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Links between the surface and subsurface:
- Fault-propagation fold structures
« Fractured limestones



Tectonic setting
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Fieldwork structures
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- 'Simple’ deformation history
« reservoir-scale dimensions




Kilometers

Structures have:
- Well-defined 3D geometries
- Comparable dimensions
- Excellent exposure
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Large-scale modeling of structures
Example: Fault-propagation fold
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3D modeling of large-scale geometry

Based on: Including:

- Satellite imagery (boundaries, faults) - Fold geometry (surface and subsurface down
- Literature cross-sections (seismic) to -1800m)

- Digital Elevation map (dips) - Seismic-scale faults

- Fieldwork data (dips, cross-sections)



Capturing small-scale deformations
Using the Digifract digitizing tool
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A unique 2.5D fracture and bedding dataset

Data gathered in 2-week fieldwork:
- 2100 fractures, veins and stylolites in 25 outcrops from 4 structures
- covering different structural domains
- cm-scale to km-scale fracture scales
- bedding measurements




Fractures related to different mechanical processes

Layer Parallel Shortening, Flexural slip and fiber stresses
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Fractures related to flexural slip
Formed during folding

- Low-angle fractures in the flank of anticline
- Striking mostly parallel to fold axis
- Small size (<1 m) and small spacing

All fractures combined
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Fractures related to Layer Parallel Shortening
Formed before folding

- Fractures sub-vertical to bedding
- 2 orthogonal sets per structure
- Large non-stratabound fractures



Trends in fracture density

Related to Fiber stress fractures formed during folding
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ldentifying homogeneous domains
For extrapolation of outcrop data to anticline fracture networks

Curvature map

- We test different geometric, kinematic
and mechanical drivers
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Populating domains with
| fracture networks
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Fast and effective fluid flow quantification
Rapid calculations to quantify uncertainties and their effect on fluid flow
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Fracture clustering Pathway / percolation analysis Streamlines

Sensitivity analysis to quantify the influence of different parameters on

fluid flow:

- Fracture size, orientation, spacing
- Depth of fracturing

Large amount of simulations using quick methods:
« Cluster analysis
- Pathway analysis
- Streamlines



Full upscaling and fracture-matrix fluid flow modeling
Using novel upscaling and fluid flow
simulation techniques

1 Build an accurate and detailed fracture-matrix fluid
« flow model using complex (unstructured) DFN grids

Compare the accuracy of quick connectivity
* estimations to the complete fluid flow simulations



From surface analog to subsurface predictions
through iterations
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Subsurface 3D fracture network modeling

1. Predict fracture network behavior in different anticline domains
2. Quantify the most uncertain domains

3. Go back to the field to fill in the model gaps

4. Improve the predictions









