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Introduction

The Arbuckle Group of the Midcontinent comprises the mid-southern part of the “Great American Carbonate Bank” (GACB) and consists
mostly of carbonates with a few laterally consistent sandstones. The Arbuckle Group is found in the Anadarko, Ardmore, and Arkoma Basins
and surrounding environs in the Texas panhandle, Oklahoma, and Arkansas (Figure 1). These basins represented a significant downwarp
associated with early rifting in the area now located in the southern one-half of both Oklahoma and Arkansas.

The Arbuckle and Timbered Hills groups in Oklahoma, the equivalent strata in the Ozark Mountains, the combined Wilberns Formation and
Ellenburger Group of Texas, the El Paso Group of southwestern Texas, and the Knox Group of the southeastern United States com prise or
partially comprise the Sauk 111 supersequence, which began to form with the late Dresbachian — early Franconian transgression and ended with
a major regression in the early Middle Ordovician (Whiterockian; Figure 2).

Depositional Facies, Diagenesis, Geologic History, and Reservoir Development

The Arbuckle is a cyclic carbonate that is dominated by intertidal and shallow subtidal facies (Figure 3). In some areas, supratidal or deeper
subtidal facies are observed. The depositional model is an extensive, dominantly regressive tidal flat with persistent peritidal facies across
much of the GACB. These peritidal cycles shallow-upward with significant variation in thickness from as thin as 4 ft (1 m) to more than 110 ft
(>34 m) thick (Figure 4). Large-scale regional changes in relative sea level may have had a large influence on the type of cycles and sequences
that formed during Arbuckle deposition. Arbuckle strata, especially within third-order sequence boundaries, are correlatable across the basin.
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Within the sequence boundaries, cycles can be further grouped into packages of sequences that are composed mostly of either intertidally
dominated or subtidally dominated cycles (Figure 5). Detailed local to regional correlation of the facies bundles can be made with gamma-ray
and resistivity logs; however, facies are commonly obscured by strong diagenetic overprint, which makes detailed correlation difficult.

Reservoirs in the Arbuckle are complex, and porosity is controlled by original depositional fabric, diagenesis, paleokarst, and fracture
overprint. Upper subtidal and lower intertidal facies typically have the depositional fabric most conducive to reservoir development. Diagenetic
changes are a continuum that begins with early diagenesis, including hypersaline-evaporative conditions, vadose and phreatic conditions, and
followed by deep phreatic to late thermal diagenesis. Evidence that porosity formed during multiple diagenetic phases exists. Dolomitization
and precipitation events also occurred throughout various levels of the profile. Dolomite is the most abundant mineral, and it can be subdivided
into (1) early (syngenetic to penecontemporaneous) hypersaline dolomite, (2) shallow-burial mixed-water (phreatic) dolomite, and (3) deeper-
burial to thermal (barogque and xenotopic) dolomite (Figure 6).

The super-Arbuckle unconformity is recognized as evidence of a eustatic sea-level drop and has been used to mark the boundary between the
Sauk and Tippecanoe depositional megasequences. The Arbuckle Group contains multiple unconformities at major sequence boundaries
(Figure 7). Paleokarst is especially prevalent beneath the super-Arbuckle unconformity, in particular along major sequence boundaries with
related unconformity surfaces. Paleokarstic features in the Arbuckle Group have been identified in outcrop in the Arbuckle Mountains of
southern Oklahoma and in the southern Ozark uplift in northeastern Oklahoma. Numerous cores and logs indicate collapse breccias that are
interpreted to have formed in response to karst conditions.

The Arbuckle Group is an important petroleum reservoir in the Midcontinent, and it has great potential, especially for natural gas. Three key oil
and gas fields are found on Oklahoma: West Mayfield in the Anadarko Basin, Cottonwood Creek in southern Oklahoma, and Wilburton in the
Arkoma Basin. Exploration is enhanced by understanding the complex relationships of depositional process, stratigraphic relationships,
paragenesis, and structural overprint. Reservoir development is typically along sequence boundaries, especially where facies have strong
diagenetic overprints from dolomitization and dissolution associated with paleokarstic events. No major source rocks below or within the
Arbuckle Group are observed; so the best reservoirs are structurally related to strong fracture overprints and juxtaposed with source rocks, or
are along migration pathways (Figure 8).

A generalized sequence of Arbuckle reservoir development can be delineated (Figure 9). (1) deposition and early syngenetic dolomitization
primarily in the Arkoma and Anadarko basins, a type of dolomitization that was apparently inhibited in southern Oklahoma because of abrupt
subsidence providing greater circulation of marine waters and thereby restricting movement of saturated brines; (2) syndepositional karst
development along sequence and/or parasequence boundaries, especially at the top of subtidally dominated sequence boundaries of third-order
cycles; (3) subsequent rejuvenation of karst and porosity development during later lowstand events in intra-Simpson to pre-Woodford hiatuses;
(4) fracture development by extensional tectonics; (5) burial by Mississippian and Lower Pennsylvanian sediments; (6) fracturing and erosion
by Early Pennsylvanian tectonics with overthrust in the Arkoma Basin and strike-slip- related upthrust in southern Oklahoma and the Wichita



uplift along the southern boundary of the Anadarko Basin; (7) deep phreatic or meteoric hydrothermal karstification along both old and new
hydrologic pathways; (8) hydrocarbon migration predominantly from Devonian, Mississippian, and Pennsylvanian shales; (9) further fracturing
during Late Pennsylvanian tectonics; and (10) both construction and destruction of hydrothermal porosity in the Arbuckle reservoir. This
sequence is in the order of most likely occurrence; however, many of the processes would have developed over a wide range of time.

Conclusion

The conclusion is that exploration in peritidal carbonates such as the Arbuckle Group should not only involve seismic structural analysis but
should also include close examination of sequence boundaries and their relationship to reservoir development. Sequence boundaries within
lower zones in the Arbuckle Group should also be examined for untapped production.
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Figure 1. Index map of the study of the Arbuckle Group of the Midcontinent. 30 mi (48.3 km).
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Figure 2. Stratigraphic correlation chart showing biostratigraphic rela tionships in the Arbuckle Group (Ethington et al., 2012, used with
permission of AAPG).
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depositional model showing tidal currents (modified from Pratt and James, 1986).
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