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Abstract

The Niobrara Formation, an interbedded source-rock and low-porosity chalk/limestone deposited during the Late Cretaceous in the Western
Interior Seaway (WIS), is an important hydrocarbon play throughout the Rocky Mountain region. The interbedded chalks and marls contribute
to the petroleum system potential of the Niobrara. Ductile marl units have higher organic carbon content, and act as both a source and seal
while most reservoir capacity is in the brittle chalk benches. Silo Field, located in the Denver-Julesburg Basin in Laramie County, Wyoming,
has been producing from the Niobrara Formation since 1981. Vertical wells were drilled in the 1980s, followed by horizontal drilling in 1990,
and finally, horizontal drilling using modern technology began ~2009. Cumulative production to date is 10.8 MMBO and 9,751 MMCFG. At
Silo Field, the Niobrara is ~300 ft. thick, is at depths between 7,500-8,500 ft., and consists of the lower Fort Hayes Limestone and the upper
Smoky Hill Member, which contains alternating chalk and marl sections. The middle B chalk bench is the main production target. Despite over
thirty years of production history at Silo Field, it is not well understood why only a few wells are top producers while neighboring wells have
very poor production rates. Though the Niobrara has been the topic of previous research, little attention has been paid in analyzing relationships
between geological trends and production data in a quantitative manner. Our objective is to identify geologic factors that contribute to
productive wells or groups of wells ('sweet spots') at Silo Field. We will identify completion practices in order to differentiate whether
successful production is due to geological variables like mineralogy, distance from faults, fracture intensity, interval thickness, and porosity; or
to how wells were managed. We will present the correlation between production and geologic variables determined from core, well logs, cross-
sections and maps, with an emphasis on the B chalk. Our goal is to build a predictive geologic model of spatial and stratigraphic heterogeneity
to test whether a relationship exists between geologic variables and production. Results from this study may contribute to understanding other
Niobrara plays in the Denver-Julesburg basin like the nearby Wattenberg and Hereford fields in Colorado, and may define what makes the
Niobrara Formation unique compared to other source rock reservoirs.
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Niobrara Setting

Generalized cross section across the Western Interior Cretaceous
Basin. Limestone and chalk beds are present over the eastern two-
thirds of the basin.
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Denver Basin

. Asymmetric basin formed by the
Laramide orogeny

. Thermally immature in the east
(biogenic gas)

. Thermally mature in the west

. Largest producing field is Wattenberg

. Silo is in the northwest part of the Denver
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found on the east
flank of basin where
source beds are
thermally immature
for petroleum
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Silo Field Drllllng History
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Cumulative Production

Niobrara cumulative production
with number of producing wells through time
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Silo Field Previous Studies

Natural fractures recognized as important for increased storage and
deliverability

Increased resistivity indicates presence of oil filled natural fractures

Johnson & Bartshe (1991a&b)
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Research Questions

> Is there a relationship between geologic variables
and successful production?
* How do geologic variables vary within Silo field?
= How does production vary within Silo field?

= What are the most influential geologic variables to
production?

thickness, resistivity, mineralogy,
fracture intensity, porosity, TOC
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Collect subsurface data
Core Description
Well Log Analysis
L g Analy
4 ™
Calibrate core
measurements to log data
- Y,
4 ™
Collect production and
completion data
- y,

All data is publically available from the
Wyoming Oil and Gas Conservation Commission
and the USGS Core Research Center
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Quantifying Fracture Intensity (Fl)
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Fracture Orientation and Well Paths
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Resistivity as an indicator of natural fractures
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DLogR method: Application

Passey et al. (1990)

» RHOB-Resistivity overlay
(No sonic logs available in wells
with core)

» TOC measurements only in
cored interval

» Initial results show chalks
more organic-rich than marls?!

» Apply GR cutoff to exclude
chalks (Resistivity increase is
due to migrated oil not
presence of OM)

2120349 Lee 415 [MD]
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marls (RHOB curve should
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Conclusions
» Yes, natural fracture intensity is important for successful production at Silo
field
= Increased deep resistivity is a good indicator of natural fractures

= NW-SE trend in production suggests fault proximity and compartmentalization
strongly influence production

= Tectonic control evidenced by increase in fracture intensity with proximity to
central fault/salt edge

» Porosity and thickness vary spatially but are not major influences on
production in the Lower B chalk

Future Work

» Multivariate analysis
» DLogR method of estimating TOC requires additional work in its
application to Silo Field

» Group wells by completion practice to further clarify the role of geologic
control on successful production



Thank you!

Questions!?

email: carrie.welker@utah.edu






