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Abstract

Tight-gas sandstone reservoirs of the Upper Cretaceous Mesaverde Group in the Greater Natural Buttes (GNB) Field have variable fluid
saturations along with low matrix porosity and permeability. In order to build more reliable saturation models, it is significant to determine
resistivity of formation water, which is one of the input parameters in water saturation calculations. This study mainly investigates how
formation water resistivity and salinity vary stratigraphically and spatially. For petrophysical analysis, the study interval was divided into
seven stratigraphic zones based on net-to-gross ratio and variation in resistivity. Formation water resistivity derived from Pickett-plot analysis
was used with formation temperature to determine formation water salinity distribution per zone. Temperature data from production logs show
that the Wasatch Formation and Mesaverde Group have higher geothermal gradients than formations that are stratigraphically above.
Therefore, formation temperature was estimated using these gradients, which are consistent through the study interval. Petrophysical analysis
indicates more fresh water is present in the western part of the study area coinciding with the trace of a basement fault. Salinity decreases
stratigraphically downward while water saturation is variable within the study interval. Average formation water resistivity per zone ranges
between 0.048 ohm-m to 0.064 ohm-m based on Pickett-plot analysis, while average formation water salinity per zone ranges between 55,000
ppm to 86,000 ppm. Furthermore, the average effective bulk-volume water is nearly constant around 3.5% suggesting that as being a basin-
centered gas accumulation, most sandstones within the study interval are close to irreducible water saturation. A combination of different
geological mechanisms might account for observed salinity variations. The increase in freshness stratigraphically downward may be due to
basement faulting and associated natural fracture system enhancing upward movement of fresher formation water. In addition, coal and
sediment dewatering in stratigraphic units below study interval might be the source of fresher formation water in this potentially closed
hydrological system, whereas distinct horizontal layering and continuity of different petrophysical rock types might result in observed salinity
trends in the area.
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Formation Water Salinity Distribution

Maps of average formation water salinity
distribution per zone (from top [UA1] to
bottom [M2]). Northwest-trending line on
the maps is the Castlegate Fault and the
black dashed line is the basement fault.
The trend shows the presence of fresher
water on the west, and it also coincides

with the trace of faults. Salinity decreases

stratigraphically downward.

Zone N Max. Min. Mean Median Mode Std. Dev. CV (%)
UA1 267 184,800 28,600 82,210 78,000 57,100 27,470 33.41
UA2 267 170,700 34,300 86,350 85,400 85,400 26,690 30.91
UA3 268 147,400 24,900 75,780 71,650 68,400 23,720 31.29
uB1 257 150,100 31,600 66,930 63,200 59,400 17,250 25.77
UB2 248 149,000 23,200 61,833 62,200 52,100 14,000 22.65
M1 243 86,300 27,600 55,200 54,600 52,400 9,690 17.55
M2 242 122,400 31,900 64,190 62,750 65,700 16,780 26.14

Salinity (ppm) statistics per zone. The average salinity for the
entire interval ranges between 55,200 ppm to 86,350 ppm
showing the highest dispersion for the zone UA1 (CV=33.41%)
and lowest dispersion for the zone M1 (CV=17.55%).

CV: Coefficient of variance.

VSH and VCL Calculations
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Irreducible Water Saturation

Buckles plot example. For the
study interval, usually the points
lie on the plot are not positioned
along the same iso-BVW line and
clear hyperbolic trend is not
observed in the graphs (e.g. due
to shaliness). In this example,
bulk-volume water irreducible
(BVWirr) is determined as 0.014
(1.4%) for the zone UAZ2.
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The graph shows data for the
well 2-7 Flat Mesa Federal. The
data were provided by Byrnes
and Cluff (2009) and include
gas-brine capillary pressure
data for 21 samples. The curves

usually present asymptotic

irreducible water saturations

(Swirr) around 10% to 30%

which are usually higher than
the log derived (Buckles plot)

Swirr.

Bulk-volume Water Distribution

Archie Equation “ Waxman-Smits Equation

a=1.00 “a=1.00
m = 1.85 “m=1.85
n=172 “n=172

Porosity: Effective porosity (PHIE)

n
&

“ Porosity: Total porosity (PHIND)

Resistivity: True formation resistivity

“ Resistivity: True formation resistivity

Rw: Obtained from Pickett Plots “ Rw: Obtained from Pickett Plots

Temperature: Linearized surface temperature “Temperature: Linearized surface temperature

“ PhitSh: Total porosity of shale (taken as 0.035)
“VCL: Volume of clay (from GR log and NDXP)
“CEC~= 3.7360*VSH + 1.1375(VSH"2)

Input parameters used for Archie and Waxman-Smits
equations. The exponents "m" and "n" were taken from

the Mesaverde study in the Piceance Basin (Merkel, 2000).
CEC was calculated using the gamma ray index (VSH)
(Chisholm et al., 1987) and VSH was set to 0.0001 for
shale-free zones before calculating CEC. Total porosity

of shale comes from the average humidity dried Boyles
Law helium core porosity of the Mesaverde Group fluvial
shale (Kukal and Hill, 1986). NDXP: Neutron-density

cross-plot.
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Maps of average effective bulk-volume water (dec) per zone
calculated using Waxman-Smits equation. Largest values are

In zones M1 and M2. No distinct pattern is observed except
for a north-east trend in UA3, UB2, and M2. Zones M1 and M2
have higher bulk-volume water relative to the upper zones.
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Rock Type Model
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Three-dimensional petrophysical rock type model using
Sequential Indicator Simulation (SIS). Because there is
not a sharp distinction in petrophysical characteristics
between Rock Type 2 (RX2) and Rock Type 3 (RX3)
compared to Rock Type 1 (RX1), RX2 and RX3 were
grouped together in the rock type model.
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nd
1 10 Formation water salinity distribution that were
> modeled using Sequential Gaussian Simulation

(SGS). Petrophysical rock type model was used
as a constraint when the salinity model was
generated.
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Controls on Salinity Distribution

Alluvial Plain

(Cole 2005; White et al. 2008)

Conclusions

Pickett-plot analysis was used to determine formation water resistivity and
salinity variations in the area.

Formation water salinity ranges between 55,200 ppm to 86,350 ppm for the
entire interval, while it decreases stratigraphically downward.

Relatively higher effective bulk-volume percentages for the Farrer Formation
might also indicate the upward movement of fresher water from stratigraphically
lower units.

100

An integration of multiple mechanisms; basement faulting and/or associated
fracture network, coal and sediment dewatering, and spatial rock distribution
are considered primary controls on observed formation water salinity distribution
considering a more closed hydrological system.
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