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Abstract 

 

Tight-gas sandstone reservoirs of the Upper Cretaceous Mesaverde Group in the Greater Natural Buttes (GNB) Field have variable fluid 

saturations along with low matrix porosity and permeability.  In order to build more reliable saturation models, it is significant to determine 

resistivity of formation water, which is one of the input parameters in water saturation calculations.  This study mainly investigates how 

formation water resistivity and salinity vary stratigraphically and spatially.  For petrophysical analysis, the study interval was divided into 

seven stratigraphic zones based on net-to-gross ratio and variation in resistivity.  Formation water resistivity derived from Pickett-plot analysis 

was used with formation temperature to determine formation water salinity distribution per zone.  Temperature data from production logs show 

that the Wasatch Formation and Mesaverde Group have higher geothermal gradients than formations that are stratigraphically above.  

Therefore, formation temperature was estimated using these gradients, which are consistent through the study interval.  Petrophysical analysis 

indicates more fresh water is present in the western part of the study area coinciding with the trace of a basement fault.  Salinity decreases 

stratigraphically downward while water saturation is variable within the study interval.  Average formation water resistivity per zone ranges 

between 0.048 ohm-m to 0.064 ohm-m based on Pickett-plot analysis, while average formation water salinity per zone ranges between 55,000 

ppm to 86,000 ppm.  Furthermore, the average effective bulk-volume water is nearly constant around 3.5% suggesting that as being a basin-

centered gas accumulation, most sandstones within the study interval are close to irreducible water saturation.  A combination of different 

geological mechanisms might account for observed salinity variations.  The increase in freshness stratigraphically downward may be due to 

basement faulting and associated natural fracture system enhancing upward movement of fresher formation water.  In addition, coal and 

sediment dewatering in stratigraphic units below study interval might be the source of fresher formation water in this potentially closed 

hydrological system, whereas distinct horizontal layering and continuity of different petrophysical rock types might result in observed salinity 

trends in the area. 
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Tight-gas sandstone reservoirs of the Upper Cretaceous Mesaverde Group in the 
Greater Natural Buttes (GNB) Field have variable fluid saturations along with low 
matrix porosity and permeability.  In order to build more reliable saturation models, 
it is significant to determine resistivity of formation water which is one of the input 
parameters in water saturation calculations.  This study mainly investigates how 
formation water resistivity and salinity vary stratigraphically and spatially.

For petrophysical analysis, the study interval was divided into seven stratigraphic 
zones based on net-to-gross ratio and variation in resistivity.  Formation water 
resistivity derived from Pickett-plot analysis was used with formation temperature 
to determine formation water salinity distribution per zone.  Temperature data from 
production logs show that the Wasatch Formation and Mesaverde Group have 
higher geothermal gradients than formations that are stratigraphically above.  
Therefore, formation temperature was estimated using these gradients which are 
consistent through the study interval.  Petrophysical analysis indicates more fresh 
water is present in the western part of the study area coinciding with the trace of a 
basement fault.  Salinity decreases stratigraphically downward while water 
saturation is variable within the study interval.  Average formation water resistivity 
per zone ranges between 0.048 ohm-m to 0.064 ohm-m based on Pickett-plot 
analysis, while average formation water salinity per zone ranges between 55,000 
ppm to 86,000 ppm.  Furthermore, the average effective bulk-volume water is 
nearly constant around 3.5% suggesting that as being a basin-centered gas 
accumulation, most sandstones within the study interval are close to irreducible 
water saturation.

A combination of different geological mechanisms might account for observed 
salinity variations.  The increase in freshness stratigraphically downward may be 
due to basement faulting and associated natural fracture system enhancing upward 
movement of fresher formation water.  In addition, coal and sediment dewatering in 
stratigraphic units below study interval might be the source of fresher formation 
water in this potentially closed hydrological system, whereas distinct horizontal 
layering and continuity of different petrophysical rock types might result in 
observed salinity trends in the area.

Abstract

Research Objectives
Because determining formation water resistivity and salinity variations is important 
in building more reliable saturation models, this study addresses the following 
questions as related to the study area in the GNB Field: 1) How does formation 
water salinity vary stratigraphically and spatially? 2) What combination of 
mechanisms (i.e. fractures, imbibition) results in variation of formation water 
salinity? 3) Does the spatial distribution of the highest reservoir quality rock type 
relate to the salinity distribution? The results of this study provide a better 
understanding of  the log-derived methodology to acquire formation water resistivity 
that is applicable in the analysis of many tight-gas sandstones. Therefore, the 
methods presented in this study can also be applied to analogous tight-gas 
sandstone formations. 
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Detailed study area.  The basement fault shown offsets below the bottom 
of the Mancos Shale and lower horizons, while it does not offset the non-
marine portion of the Mesaverde (e.g. the study interval) and it is expressed 
as a subtle noise in the non-marine portion. There are faults in the 
shallower interval in the GNB Field along the trend of this deeper seated 
fault. The Castlegate Fault coincides with the trace of the White River, 
while it was only hypothesized because of the very poor seismic data due 
to presence of a valley. Although there is reasonable seismic evidence of 
the basement fault, the Castlegate Fault is speculative (Butler, pers.comm., 
2013).

Map of the Greater Natural Buttes (GNB) Field including the location 
of Fairway which is the area of continuous Wasatch/ Mesaverde gas 
production. The approximate boundaries of the Natural Buttes Unit 
(NBU), Chapita Wells Unit (CWU), and Bonanza Field (Bonanza) are
shown with a solid black line. Modified from Stancel et al. (2008).
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Temperature curves recorded by the CBL tool for several wells in the study area (colored lines).
Approximate depths of Wasatch Formation and Mesaverde Group are shown by black dashed
lines. To maintain a linear gradient, slope for the Mesaverde portion of each curve was 
extrapolated to the surface to estimate a surface temperature (solid black lines). Temperature 
data forthe other wells in the area were obtained by linearizing the average estimated surface 
temperature using the average slope (Miller, pers. comm., 2013).
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Type log for the study area 
(see basemap for the location). 
The resistivity values higher 
than 20 ohm-m are color coded 
green in order to separate 
sandstone from shale. Dark 
Canyon interval is a part of the 
Wasatch Formation.
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al. (1990).
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Composite histograms (before and 
after normalization) for the gamma-
ray, density, and neutron-porosity logs. 
Gamma-ray histogram shows bimodal 
distribution, whereas skewness can be 
seen both in neutron porosity and 
density logs which is caused by the 
presence of shale. Sand and shale 
modes in the gamma-ray histogram, 
and skewness in bulk-density and 
neutron-porosity logs are also 
displayed in the figure.

Pickett-plot Analysis

Pickett Plot examples from two different wells for the zones UB1 and UA2. Both the
density of data points (A) and the approximate linearity in the upper bound of the data (B) were
used to position the irreducible water saturation line (Swirr=25%). After adjusting Swirr line on
the graph (1), 100% water saturated line is extended to the 100% porosity line (2) to determine
formation water resistivity (Rw, [3]). The distance between water saturation lines is determined
by the saturation exponent "n", and the slope of the water saturation lines is determined by the
cementation exponent "m". Exponents "m" and "n" were set at 1.85 and 1.72 in Pickett-plots
based on a Mesaverde study in Piceance Basin (Merkel, 2006).



Zone

UA1

UA2

UA3

UB1

UB2

M1

M2

N Max. Min. Mean Median Mode Std. Dev.

267 184,800 28,600 82,210 78,000 57,100 27,470

267 170,700 34,300 86,350 85,400 85,400 26,690

268 147,400 24,900 75,780 71,650 68,400 23,720

257 150,100 31,600 66,930 63,200 59,400 17,250

248 149,000 23,200 61,833 62,200 52,100 14,000

243

242

86,300 27,600 55,200 54,600 52,400 9,690

122,400 31,900 64,190 62,750 65,700 16,780

CV (%) 

33.41

30.91

31.29

25.77

22.65

17.55

26.14

Salinity (ppm) statistics per zone. The average salinity for the 
entire interval ranges between 55,200 ppm to 86,350 ppm 
showing the highest dispersion for the zone UA1 (CV=33.41%) 
and lowest dispersion for the zone M1 (CV=17.55%). 
CV: Coefficient of variance.

0

0.133

0.267

0.4

V
SH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SWE (Effective water saturation) v/v

Buckles Plot

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
H

IE
 v

/v

0.01

0.02

0.03

0.04
0.05

0.06 0.07

Iso-BVW lines

BVWirr

3000

3500

2500

2000

1500

1000

500

0
0 10 20 30 40 50 60 70 80 90 100

6351.5 ft
6468.4 ft
6475.3 ft
6482 ft
6486.4 ft
6486.7 ft
6515.6 ft
6515.6 ft(2)
6527.6 ft
6530.3 ft
6550.5 ft
6688.2 ft
7276.2 ft
7279.9 ft
7293.5 ft
7311.9 ft
7312.7 ft
7689.7 ft
5638.8 ft
7712.7 ft
7885.4 ft
7885.4 ft(2)

G
as

-w
at

er
 h

ei
gh

t a
bo

ve
 fr

ee
-w

at
er

 le
ve

l (
ft)

Ambient cumulative wetting phase saturation (%)

2-7 Flat Mesa Federal

The graph shows data for the 
well 2-7 Flat Mesa Federal. The 
data were provided by Byrnes 
and Cluff (2009) and include 
gas-brine capillary pressure 
data for 21 samples. The curves 
usually present asymptotic 
irreducible water saturations 
(Swirr) around 10% to 30% 
which are usually higher than 
the log derived (Buckles plot) 
Swirr.
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M2 Maps of average effective bulk-volume water (dec) per zone 
calculated using Waxman-Smits equation. Largest values are 
in zones M1 and M2. No distinct pattern is observed except 
for a north-east trend in UA3, UB2, and M2.  Zones M1 and M2 
have higher bulk-volume water relative to the upper zones. 

Bulk-volume Water DistributionIrreducible Water Saturation

Buckles plot example. For the 
study interval, usually the points 
lie on the plot are not positioned 
along the same iso-BVW line and 
clear hyperbolic trend is not 
observed in the graphs (e.g. due 
to shaliness). In this example, 
bulk-volume water irreducible 
(BVWirr) is determined as 0.014 
(1.4%) for the zone UA2.

Archie Equation Waxman-Smits Equation

a = 1.00

m = 1.85

n = 1.72

Porosity: Effective porosity (PHIE)

Resistivity: True formation resistivity

Rw: Obtained from Pickett Plots

Temperature: Linearized surface temperature

a = 1.00

m = 1.85

n = 1.72

Porosity: Total porosity (PHIND)

Resistivity: True formation resistivity

Rw: Obtained from Pickett Plots

Temperature: Linearized surface temperature

PhitSh: Total porosity of shale (taken as 0.035)

VCL: Volume of clay (from GR log and NDXP)

CEC = 3.7360*VSH + 1.1375(VSH^2)     ~

Input parameters used for Archie and Waxman-Smits 
equations. The exponents "m" and "n" were taken from 
the Mesaverde study in the Piceance Basin (Merkel, 2006). 
CEC was calculated using the gamma ray index (VSH) 
(Chisholm et al., 1987) and VSH was set to 0.0001 for 
shale-free zones before calculating CEC. Total porosity 
of shale comes from the average humidity dried Boyles 
Law helium core porosity of the Mesaverde Group fluvial 
shale (Kukal and Hill, 1986). NDXP: Neutron-density 
cross-plot.
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(Cole 2005; White et al. 2008)

Increasing formation 

   water chlorides

Conclusions
Pickett-plot analysis was used to determine formation water resistivity and 
salinity variations in the area.

Formation water salinity ranges between 55,200 ppm to 86,350 ppm for the 
entire interval, while it decreases stratigraphically downward. 

Relatively higher effective bulk-volume percentages for the Farrer Formation 
might also indicate the upward movement of fresher water from stratigraphically
lower units.

An integration of multiple mechanisms; basement faulting and/or associated 
fracture network, coal and sediment dewatering, and spatial rock distribution 
are considered primary controls on observed formation water salinity distribution 
considering a more closed hydrological system. 

 

Three-dimensional petrophysical rock type model using 
Sequential Indicator Simulation (SIS).  Because there is 
not a sharp distinction in petrophysical characteristics 
between Rock Type 2 (RX2) and Rock Type 3 (RX3) 
compared to Rock Type 1 (RX1), RX2 and RX3 were 
grouped together in the rock type model.
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Formation water salinity distribution that were 
modeled using Sequential Gaussian Simulation 
(SGS). Petrophysical rock type model was used 
as a constraint when the salinity model was 
generated.

Stratification and features

Ripple lamination

Contorted bedding

Root traces

Planar lamination

Low-angle cross-bedding

High-angle cross-bedding

Mudchips

Plant material

Cryptic bioturbation

Wavy ripple lamination

Ophiomorpha like (pelleted burrow)Trough cross-bedding

Neutron-Density Cross-plot
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Neutron-density cross-plot technique 
to find clay volume (VCL, %).  In order 
to determine sandstone points, multi-
well cross-plot was generated without 
filtering shale.  Sandstone points on the 
graph were determined as [0.2.5 g/cc] 
and [0.15, 2.25 g/cc] for the neutron-
porosity and density log respectively 
in order to capture the majority of the 
data on the plot.  

Figure shows the gamma-ray frequency 
histogram. Histograms were prepared for 
each section in the study area. GRmin 
and GRmax values were determined for 
each section separately by selecting 
inflection points on the left and right 
shoulders of the histogram. 

Formation Water Salinity Distribution

Salinity (ppm)
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Maps of average formation water salinity 
distribution per zone (from top [UA1] to 
bottom [M2]). Northwest-trending line on 
the maps is the Castlegate Fault and the 
black dashed line is the basement fault. 
The trend shows the presence of fresher 
water on the west, and it also coincides 
with the trace of faults. Salinity decreases 
stratigraphically downward.

VSH and VCL Calculations Petrophysical Rock Type Classification
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2-9 Flat Mesa Federal

No Name Canyon Federal 
and CWU 854-33 cores; 
core descriptions compared 
to gamma-ray log and 
petrophysical rock type 
curve signatures.

RX1 RX2 RX3

RX4 RX5

Examples

Structureless sandstone
Cross-bedded sandstone

Planar-laminated
sandstone

Ripple cross-bedded
sandstone
Mottled sandstone

Mudstone

Mudstone
Claystone
Coal (rarely)

RX1

RX2

RX3

RX4

RX5

1 in
2.5 cm

Examples of petrophysical rock types 
based on core-to-log comparisons and 
core descriptions. Rock Type 1 (RX1), 
Rock Type 2 (RX2), and Rock Type 3 
(RX3) are usually sandstone facies and 
they are considered as potential reservoir 
rocks. The difference between them is 
based on change in sedimentary structure 
and grain size. RX1: Highest reservoir 
quality rock type.


