Integrated Reservoir Evaluation as a Means for Unlocking Maximum Resource Value in an Unconventional Reservoir: Niobrara Formation, DJ Basin, Colorado*

Marshall Deacon¹ and Robert Lieber¹

Search and Discovery Article #110168 (2013)**
Posted August 30, 2013

*Adapted from oral presentation at Discovery Thinking Forum, AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19-22, 2013. Please refer to companion article presented by the authors and their co-workers and entitled “Stratigraphic Controls on Reservoir Properties, Cretaceous Niobrara Formation, DJ Basin, Colorado,” Search and Discovery Article #80314 (2013).

**AAPG©2013 Serial rights given by author. For all other rights contact author directly.

¹Noble Energy, Inc., Denver, CO (mdeacon@nobleenergyinc.com)

Summary

- The Niobrara is areally extensive in northeastern Colorado and adjacent states.
 - Thermal history parallels GOR trends.
- Traditional petrophysical workflows, with added rigor where needed, will allow full scale reservoir evaluation.
 - There is a correlation between geologic rock types and log response.
- Conventional stratigraphic nomenclature does not always relate to subsurface rock properties.
- 3D seismic decreases operations and targeting risk.
 - Opportunities for dynamic geosteering.
 - Static and dynamic reservoir modeling.
- Integrated data gathering resulted in increased OOIP estimates and actual recovery.

Reference Cited

Website Cited

Integrated Reservoir Evaluation as a Means for Unlocking Maximum Resource Value in an Unconventional Reservoir: Niobrara Formation, DJ Basin, Colorado

Marshall Deacon & Robert Lieber
Noble Energy, Inc – Denver, Colorado

2013 AAPG Annual Convention
Goal: Responsibly maximize economic recovery volumes from the Niobrara concurrent with evolving technical understanding

Methods: Integrated data collection and analysis - Try new/different things

Outcome: Increased OOIP (original oil in place) estimates per section, increased recovery factor per section
Unlocking the Niobrara

- **Goal**: Responsibly maximize economic recovery volumes from the Niobrara concurrent with evolving technical understanding
- **Methods**: Integrated data collection and analysis - Try new/different things
- **Outcome**: Increased OOIP (original oil in place) estimates per section, increased recovery factor per section

- Reservoir complexity increases as grain size decreases
- Keep your eye on the rocks
- Integration is key to success
Unlocking the Niobrara

- Intro - What, where & when
- Evolving development
- Geologic Controls
- Petrophysical model
- Proof – “in-situ lab”

Source: Ancient Denvers, Kirk Johnson
Denver Museum of Nature & Science
Denver Basin Setting & Niobrara Stratigraphy

DJ Basin/Niobrara Stratigraphy

Top Niobrara Depth (TVDSS ft)

Typical Depth

- Pierre Shale: 6800'
- Sharon Springs: 275' - 350'
- Niobrara: 7100'
- CODELL SS Fairport Greenhorn Graneros J Sand Dakota: 7600'

- A Chalk
- B Chalk
- C Chalk
- Ft. Hayes
Wattenberg/Niobrara Production History

- Over 17,000 wells drilled in the Greater Wattenberg Area (GWA)
 - Extensive history and knowledge base
 - Horizontal Niobrara driving new chapter in production growth
- Applied learnings continue to unlock hydrocarbons
- Expanding productive limits of basin to the northeast with the latest horizontal technologies

Source: IHS

- NBL 2013 150+ wells
- J sand
- Sussex/Shannon
- Codell/Niobrara Vertical
- Niobrara Horizontal
Niobrara Development: 1950-2006 Vertical Times

Pierre Shale

A Chalk
A Marl
B Chalk
B Marl
C Chalk
C Marl
D Chalk
Ft Hays Ls
Codell Ss
Carlile
Niobrara Development: 2007-2013 Horizontal Breakthrough

Sharon Springs

- A Chalk
- A Marl
- B Chalk
- B Marl
- C Chalk
- C Marl
- D Chalk
- Ft Hays Ls
- Codell Ss
- Carlile
Determining Sweet Spots & Resource Distributions

Temperature Gradient °F/100’

SILO

Ro = 0.7

WATTENBERG

Denver

WELL EUR
8 Strategically Placed Core Wells
- Over 2400 ft of core
1650 mi² 3D seismic
Petrophysical Logs
- Formation image logs on laterals
Microseismic on 55 wells
Production data
“In-situ lab” section
- DTQ, tracers

Presenters’ notes: This is resource in place. 8100+ wells, including 275+ Hz wells. 2013 plans are to drill 300 hz Niobrara wells.
Unlocking the Niobrara: understanding the rocks

- Depositional Facies
- Rock Properties: Ym, Pr
- TOC, Vclay, Phi
- Thermal Maturity, GOR
- Faulting/fractures, Stress
- Wetness, Sw

Basin to nanometer scale – it all plays a role

Microporosity in pellets

Coccolith porosity

Blakey, 2006

Seaway
Niobrara Rock Properties - Starts With Understanding The Pellets
Niobrara Carbonate Facies:

Burrowed Chalks/Marks
- Bioturbated Chalk: 2-6 in
- Bioturbated Marly Chalk: 2-6 in
- Bioturbated Chalky Marl: 2-6 in
- Burrowed Slightly Chalky Marl: 2-6 in

Laminated Chalks/Marks
- Laminated, Burrowed Chalk-Marly Chalk: laminae to 0.5 inch
- Laminated, Burrowed Chalky Marl: laminae to 0.5 inch
- Laminated Chalky Marl (and rare thin marly chalk): laminae-scale

Alternating Bioturbated/Laminated Beds
- Interbedded Bioturbated/Laminated Marly Chalk: > 4” (break out individual chalk bed if > 5-6”)
- Bioturbated Alternating Bioturbated/Laminated Marly Chalk: 1-3”
- Alternating Bioturbated/Laminated Marly Chalk: 1-3”
- Alternating Bioturbated/Laminated Chalky Marl: 1-3”

Crinkly-Laminated Beds
- Crinkly-Lam Bedded Chalk and Marly Chalk: > 4” (break out individual chalk bed if > 5-6”)
- Alternating Crinkly-laminated/bioturbated Marly Chalk and Chalky Marl: 0.5-4.0”

- Bioturbated chalks + marly chalks
- Laminated chalks + marly chalks
- Alternating bioturbated/laminated beds
- Crinkly-laminated Chalk + Marl interbeds

- Burrowed chalk (Chondrites)
- Laminated Chalk & marl. Inverse and regular graded laminae of squashed pellets
- Cyclic alternation between laminated marls and thin, burrowed chalk beds
- Pure CO3 chalk/ Organic-rich, high TOC beds - Microbial mats?
Niobrara Depositional Sequence Summary

“Chalking”

Aggradational

“Marling”

TT: Transgressive, open circulation
- Chalk-rich, dry cycle
- Low TOC
- Biotic processes dominate (CO3 productivity, microbial, burrowing)

RT: Regressive, restricted circulation
- Clay-rich
- Terrigenous Influx, wet cycle
- High TOC

Climate Driven Cylicity
Sequence Architecture –
Intra-basinal tectonics results in varying sedimentation rates & lateral facies changes

WattTrough Watt High Greeley Sub-basin Morrill Co.High

End Niobrara Time

End Niobrara C Time

End Niobrara D Time

NIOBRARA CROSS SECTION A - A'
Townships: 1S 70W -- 12N 61N
Datum: No D Chalk (EWR Top)

noble energy
Reservoir Property Mapping Within Sequences

Multi-Township Scale Pods

Understanding lateral extent of properties facilitates appraisal & development

More accurate OOIP determinations
3D Seismic: Don’t drill a well without it

Top Nio A least square gridded surface; C.l. 5 ft
Iterative Loop Between Models and Borehole Data

- Real-time integration with geosteering
- Continuous improvement of reservoir model

Integration of log data, structural model, modeled reservoir properties
Petrophysics Discussion
What Goes into the Petrophysical Analysis of a Shale Reservoir?

- Not surprisingly the same things that go into the analysis of conventional reservoirs with a few caveats.

 1) Fluid saturation is not controlled by capillarity
 2) Pore systems are complex and pore/pore throats are very, very small
 3) Wettability is complex and most mudstones are possibly mixed wettability to strongly hydrocarbon wet.

 - This is an essential part of the story; otherwise it is impossible for hydrocarbons to flow through the matrix
 - Correcting for clay porosity is even more essential than in a conventional reservoir

- All of these issues impact the Niobrara
Petrophysics of Unconventional Reservoirs
Example of Clay Volume Determination From the Niobrara

- Clay volume is coming from our spectral gamma ray data
- Does a much better job than total GR
The density porosity is using a variable matrix and a variable fluid.

- The RHOM is a function of the VCL
- The RHOF is a function of the quick look saturation, the hydrocarbon density and an invasion exponent

PHI_DN is used when there is X-Over
Petrophysics of Unconventional Reservoirs
Example of Clay Corrected Fluid Saturation From the Niobrara

- Resistivity based model calibrated to both RCA and GRI core based analysis
 - Density based model inherently flawed due to issues around density measurement

- Large volume of core based analysis is essential for calibration of final model
 - At the end of the day that is all that the Archie Equation does

- Model must take into account clay based fluids and calculate a clay corrected water and hydrocarbon saturation

- Regionally varying in situ reservoir fluids (changes in GOR) were also accounted for in the model.
Major Geologic Rock Types

Bioturbated chalks + marly chalks

Laminated chalks + marly chalks

Alternating bioturbated/laminated beds, with variable bed thicknesses (1-6”)

Alternating bioturbated / ”crinkly-laminated” beds with variable bed thicknesses (1-6”)

Reservoir Facies

Bioturbated foram/bioclastic packstones (Ft. Hays)
Key Well 1 Computer Processed Log with Geologic Rock Types
Total Niobrara from Key Well 1 in Wattenberg
Crossplot Geologic Rock Type vs VCL
Four Colorado Cored wells Zone 3 Niobrara
Crossplot Geologic Rock Type vs SW
Key Well 1
Mechanical Rock Properties Plot

Table:

<table>
<thead>
<tr>
<th>GRKT/GR</th>
<th>GRKT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>API</td>
</tr>
<tr>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference (FT) 1:600</th>
</tr>
</thead>
<tbody>
<tr>
<td>6575</td>
</tr>
<tr>
<td>6600</td>
</tr>
<tr>
<td>6625</td>
</tr>
<tr>
<td>6650</td>
</tr>
<tr>
<td>6700</td>
</tr>
<tr>
<td>6725</td>
</tr>
</tbody>
</table>

Legend:

- BVG
- DTC
- POISD

- VSH
- USPF
- DTC
- YD
- YS

- BRIT
- (BRIT)

Zones:

- 6575 - 6600
- 6625 - 6650
- 6700 - 6725
In-Situ Underground Laboratory

Subsurface Data Acquisition
- 10 down hole pressure and temperature gauges
- 43,800 ft of down hole fiber optic cable for temperature and acoustic measurement
- Direct in-situ pressure, stress, fracture mechanics measurement
- 3D seismic, down hole microseismic, and vertical seismic profile
- Well logs: spectral gamma ray, resistivity logs, porosity logs
- Liquid tracers
- 374 ft whole core analysis
- Core extract and produced oil geochemistry
Summary

- The Ninhrara is areally extensive in northeastern Colorado and adjacent states
 - Thermal history parallels GOR trends
- Traditional petrophysical workflows, with added rigor where needed, will allow full scale reservoir evaluation
 - There is a correlation between geologic rock types and log response
- Conventional stratigraphic nomenclature does not always relate to subsurface rock properties
- 3D seismic decreases operations and targeting risk
 - Opportunities for dynamic geosteering
 - Static and dynamic reservoir modeling
- Integrated data gathering resulted in increased OOIP estimates and actual recovery

Presenters’ notes: 10,000 locations planned to drill, executing a 300-500 well program per year. $1.7 B capital program. Rate of returns per well is excellent. Leverage expertise to unlock additional resources.
Forward-looking Statement and Non-GAAP Measures

This presentation/communication may include projections and other “forward-looking statements” within the meaning of the federal securities laws. Any such projections or statements reflect Noble Energy’s current views about future events and financial performance. No assurances can be given that such events or performance will occur as projected, and actual results may differ materially from those projected. Risks, uncertainties and assumptions that could cause actual results to differ materially from those projected include, without limitation, the volatility in commodity prices for crude oil and natural gas, the presence or recoverability of estimated reserves, the ability to replace reserves, environmental risks, drilling and operating risks, exploration and development risks, competition, government regulation or other action, the ability of management to execute its plans to meet its goals and other risks inherent in Noble Energy’s business that are detailed in its Securities and Exchange Commission filings. Words such as “anticipates,” “believes,” “expects,” “intends,” “will,” “should,” “may,” and similar expressions may be used to identify forward-looking statements. Noble Energy assumes no obligation and expressly disclaims any duty to update the information contained herein except as required by law.

This presentation also contains certain forward-looking non-GAAP measures of financial performance that management believes are good tools for internal use and the investment community in evaluating the company’s overall financial performance. These non-GAAP measures are broadly used to value and compare companies in the crude oil and natural gas industry. This presentation contains forward-looking non-GAAP financial measures identified as discretionary cash flow and discretionary cash flow per share (utilizing current shares outstanding). The GAAP measure most comparable to discretionary cash flow is net cash provided by operating activities (net operating cash). Net operating cash is not accessible on a forward-looking basis and reconciling information is not available without unreasonable effort. The reconciling information that is unavailable would include a forward-looking balance sheet prepared in accordance with GAAP. The probable significance of having a forward-looking GAAP balance sheet is estimated to be a variance of plus or minus 10 percent of the forward-looking discretionary cash flow in this presentation.

For additional information – website www.nobleenergyinc.com