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Abstract

Across broad areas of northern and west-central Utah, the Upper Mississippian is represented by two interbedded formations, the Manning
Canyon Shale and the Great Blue Limestone. The Manning Canyon Shale contains minor carbonates and locally abundant organic matter,
whereas the carbonate-rich Great Blue Limestone generally lacks appreciable organic matter and siliciclastic constituents. The Manning
Canyon Shale is a regionally significant, potential hydrocarbon source rock. Wells completed in Manning Canyon Shale at the north end of the
San Rafael Swell near Price, Utah, have shown enticing, albeit sub-commercial, natural gas flow rates. This study describes core from a
vertical well in this area (Carbon Canal 5-12), which was completed in Manning Canyon Shale during early 2008 by Shell E&P Inc. Shortly
after completion, testing of this well showed production rates of 78 Mcf/d and 667 Bw/d over a 63-hour period. The produced gas contained
93% methane, 4% ethane, 1.4 % nitrogen, and just 0.5% carbon dioxide, with a heating value of 1,052 BTU/scf. Down-hole fiber optics
indicated that most of the flow was from between 9,124 ft to 9,350 ft, roughly corresponding to the lower half of the cored interval. The 546 ft
core (8,805-9,351 ft depths) includes the upper two-thirds of the Manning Canyon Shale and 101 ft of the overlying Oquirrh/Round Valley
Formation. Nearly 90% of the Manning Canyon part of the core consists of carbonaceous shale and limestone, which is typically silty with
laminar features. The remainder is largely non-carbonaceous, nodular and micritic limestone. The inorganic constituents includes sub-equal
parts of quartz as silt grains and minor siliceous sponge spicules, carbonate as lime mud, microbioclasts and skeletal debris, and clay. Total
organic carbon (TOC) ranges from <1% to >60% and is present as microscopic grains, macroscopic plant parts, and four thin coal beds.
Despite abundant TOC, the generation potential (S1+S2) is poor to fair (0.1-6 mg HC/g rock), consistent with the high maturity (dry gas stage)
and abundant inertinite (fossil charcoal) indicated by petrographic analyses. Nonetheless, inflated sealed core sample bags suggest that the
Manning Canyon Shale retains some quantity of adsorbed natural gas and may have shale-gas reservoir characteristics.
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Manning Canyon Shale in the northern San Rafael Swell:
A potential natural gas resource play?
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Summary

Across broad areas of northern and west-central Utah the Upper Mississippian is represented by
two interbedded formations, the Manning Canyon Shale and the Great Blue Limestone. The
Manning Canyon Shale contains minor carbonates and locally abundant organic matter, where-
as the carbonate-rich Great Blue Limestone generally lacks appreciable organic matter and silici-
clastic constituents. The Manning Canyon Shale is a regionally significant, potential hydrocar-
bon source rock. Wells completed in Manning Canyon Shale at the north end of the San Rafael
Swell near Price, Utah, have shown enticing, albeit sub-commercial, natural gas flow rates.

This study describes core from a vertical well in this area (Carbon Canal 5-12), which was com-
pleted in Manning Canyon Shale during early 2008 by Shell E&P Inc. Shortly after completion,
testing of this well showed production rates of 78 Mcf/d and 667 Bw/d over a 63 hour period.
The produced gas contained 93% methane, 4% ethane, 1.4 % nitrogen, and just 0.5% carbon di-
oxide, with a heating value of 1,052 BTU/scf. Down-hole fiber-optics indicated that most of the
flow was from between 9124 ft to 9350 ft, roughly corresponding to the lower half of the cored
interval. The 546 ft core (8805-9351 ft depths) includes the upper two-thirds of the Manning
Canyon Shale and 101 ft of the overlying Oquirrh/Round Valley Formation. Nearly 90% of the
Manning Canyon part of the core consists of carbonaceous shale and limestone, which is typi-
cally silty with laminar features. The remainder is largely non-carbonaceous, nodular and mi-
critic limestone.

The inorganic constituents includes sub-equal parts of quartz as silt grains and minor siliceous
sponge spicules, carbonate as lime mud, microbioclasts and skeletal debris, and clay. Total or-
ganic carbon (TOC) ranges from <1% to >60% and is present as microscopic grains, macroscopic
plant parts, and four thin coal beds. Despite abundant TOC, the generation potential (S1+S2) is
poor to fair (0.1-6 mg HC/g rock), consistent with the high maturity (dry gas stage) and abun-
dant inertinite (fossil charcoal) indicated by petrographic analyses. Nonetheless, inflated sealed
core sample bags suggest that the Manning Canyon Shale retains some quantity of adsorbed
natural gas and may have shale-gas reservoir characteristics.

Features to Observe in the Carbon Canal 5-12 Core

The dominance of dark carbonaceous limey and silty mudstones with alternating intervals of
friable and dense mudstones.

Systematic variations in lithofacies upward through the core, becoming less shaly and organic-
rich towards the top.

Repeated “freshing - upward” lithologic cycles in which dark highly carbonaceous mudstone or
shale rests with sharp boundary on non- or poorly-carbonaceous lime mudstone. Are these eu-
static parasequences, or merely products of migrating mudmounds (keys) and shallow, poorly
ventilated lagoons?

Thin coal beds frequently associated with organic-rich shelly limestone laminae.

Siderite nodules in the lower parts of the core indicating a fresh-water depositional setting.

Inflated silver mylar sealed gas canister samples indicating continued desorption of methane
from the rock.

Jeffrey Quick
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Manning Canyon Shale in the northern San Rafael Swell
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Organic petrography and geochemistry
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Abundant inertinite, and lack of associated vitrinite, can mislead the petrographer and result
in erroneously high measured vitrinite reflectance measurements. Vitrinite in coal beds in the
Carbon Canal 5-12 core were the key to recognizing the abundance of inertinite

111°00"W W 110°30'0"W

@ Dill hole with vitrinite reflectance (Ro) measurement
Best-fit Ro trend surface isoline
ID  Drill Hole Name API UTME  UTMN Ro avg
0 Arcadia Telonis 1 4300730093 504251 4381962 1.41
1 Carbon Canal 5-12 4301530709 520963 4366663 1.43
2 Farnham Dome 1-A 4300715395 533892 4375629 1.70
3 Fed Mounds 1 4301510825 528984 4366369 1.45
4 Miller Creek 1 4300711029 520529 4371939 1.35
5 Spjut 151 4301530067 526174 4365533 1.38
6 State 1-16 4300730071 526701 4383803 1.73
7 North Springs 1 4300710791 508373 4370693 1.43

A first-order trend surface of average vitrinite reflectance for eight wells shows increasing maturity of the Manning Canyon Shale towards the
northeast. The equation: Ro=-9.739E-6UTME+1.4918E-5UTMN--68.83, has an adjusted R2 of 0.68, and a standard error of 0.08.




Carbon Canal 5-12 Core Logs
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Plate 2

Carbon Canal 5-12 photomicrographs
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8975.9 ft: silty argillaceous wackestone with abundant lime
mud fragments, some encrusted by algae, microbioclasts and
shell fragments, including thin-walled pelcyopod shell debris.
Quartzsilt is scattered through the lime mud matrix. Pyrite
framboids.

R M08 -

90419 ft: Very dark gray wackestone rich in skeletal material,
including fragmented bryozoans, crinoids, and thin-walled
pelcyopods. Lime mud rip-up clasts.

= -

8998.1 ft: Laminated lime mudstone with wispy dark lamina-
tions and scattered shell fragments. Secondary white dolomite
thombs.

stone and silty calcareous shale. Some intervals are rich in
thin-walled pelcyopod shells.

E LT
9216.8 ft: Very dark gray phosphatic wackestone rich in

highly-abraded and recrystallized crinoid and other skeletal
debris together with phosphate nodules.

9254.3 t: Pyritized shell-rich argillaceous wackestone contain-
ing reddish brown phosphate nodules.

9145.2 ft: Finely laminated silty shale with minor microbio-
clasts.

93124 ft: Black shale rich in skeletal debris partially pyritized.

. s,
93236 ft: Interlaminated calcareous siltstone and organic-rich
black shale. The thicker siltstone laminae contain a mix of
quartzsilt, sit-sized microbioclasts, and plant fragments. Also
brown sideritic rip-up clasts, some of which are algae en-
crusted.

9184.1 ft: Very dark gray wackestone to packstone contain-
ing abundant thin-walled pelcyopod shell debris and dark
reddish brown phosphate nodules up to 0.5 mm in size.

93236 ft: Interlaminated calcareous siltstone and organic-
tich black shale. The thicker siltstone laminae contain a mix
of quartzsilt,sit-sized microbioclasts, and plant fragments.
Also brown sideritic rip-up clasts, some of which are algae
encrusted.

9324.0 ft: Laminated calcareous siltstone rich in silt-sized
microbioclasts and containing plant fragments and thin-
walled pelcyopod shell debris.

Lithology Color

Carbon Canal 5-12 Core
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