The Potential of Enhanced Geothermal Energy Systems in Saudi Arabia*

Salem G. Aljuhani¹

Search and Discovery Article #80249 (2012)**
Posted August 27, 2012

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Long Beach, California, April 22-25, 2012

¹Petroleum Engineering, Texas A&M University, Doha, Qatar (salem.aljuhani@qatar.tamu.edu)

Abstract

Saudi Arabia is a major oil and gas producing country, but additionally it has good potential for other sources of energy such as solar and geothermal energy. The potential of geothermal energy in Saudi Arabia is evidenced by vast Harrat fields covering huge areas along the Red Sea coast. Harrats are volcanic rocks resulted from previous eruptions started with the opening of the Red Sea 30 million years ago. The last documented eruption in the Hijaz Province happened more than 700 years ago. Yet, in 2009, several earthquakes rocked the towns of UmLuj and Alais. The earthquakes were related to an upward movement of volcanic magma in the Lunayyir Volcanic Field. The eruption has not occurred yet, but it is expected to happen at any time.

The basic components of a geothermal energy system are heat source, water and a reservoir where heat is exchanged. The heat source is abundantly available along the Red Sea coast, especially in the Jizan Province. Several hot springs exist in that area where the measured heat exceeds 50 degrees C at the surface of the Earth.

The petroleum-related activities have proven the existence of sedimentary reservoirs where hydrocarbons are trapped. These reservoirs and other sedimentary formations can be developed for geothermal energy reservoirs. Those formations are available in Jizan and Umluj on the Red Sea shoreline.

Water is a serious problem in Saudi Arabia and could be a limiting factor on the utilization of geothermal energy. However, since most of the promising areas are adjacent to the shoreline of the Red Sea, sea water could be used in the system. Using the sea water will produce energy and desalinated water as a by-product.

^{**}AAPG © 2012 Serial rights given by author. For all other rights contact author directly.

Saudi Arabia has a good source of clean and sustainable energy if the government decides to utilize it. It exists on the other side of the country away from the giant oil and gas fields, which substantially reduces the cost of transportation and provides cheaper energy.

Reference

Rehman, S., 2010, Saudi Arabian geothermal energy resources-an update: Proceedings World Geothermal Congress 2010, 25-29 April 2010, Bali, Indonesia, Paper No. 0107.


Website

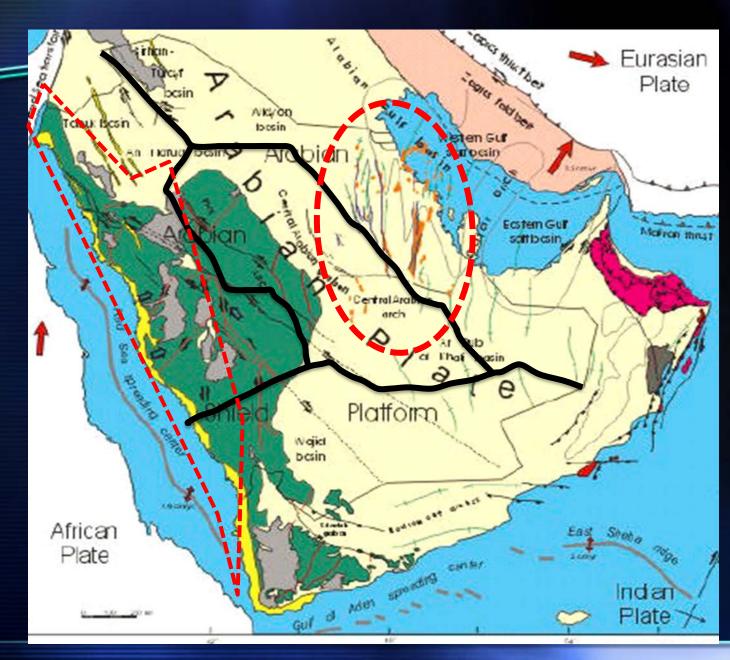
Seach, J., Volcano Live: Volcanoes of Saudi Arabia – John Seach: Internet resource, Web accessed 16 August 2012. http://www.volcanolive.com/saudi.html

THE POTENTIAL OF ENHANCED GEOTHERMAL ENERGY SYSTEMS IN SAUDI ARABIA

Salem Gulaiyel Aljuhani Texas A & M University at Qatar

Hottest Known Geothermal Regions in the World

The hottest places exist in areas of high tectonic and volcanic activities


At or near plate margins

Source: Geothermal Energy Association(GEA)

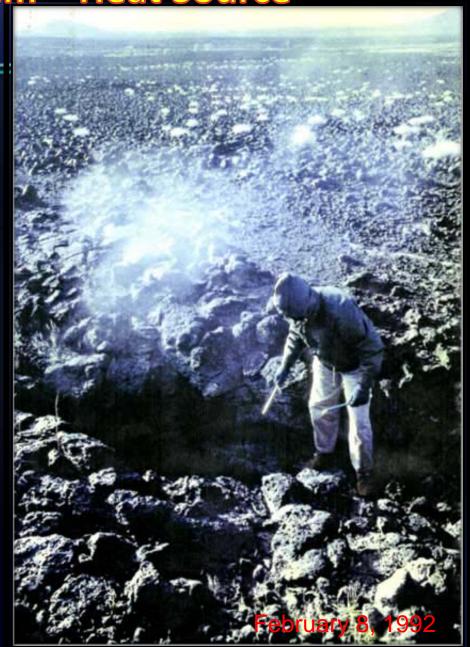
The potential of the geothermal energy systems depends on:

- The availability of system elements
 - ✓ Heat source
 - ✓ Reservoir
 - ✓ Water
- > Energy demand
- Oil/Gas consumption
- > Geographic location
- **Economic capability**
- > Technical experience

Energy Sources in Saudi Arabia

Geothermal Energy System – Heat Source

Volcanic Sites (Harrat) in Saudi Arabia (Geothermal prospects)


Volcanic Site	elevation	Location	Eruptions	
Al Harrah	1100 m	near Jordan Borders	no recent eruptions	
Harrat Ar Raha	1660	Tabuk	no recent eruptions	
Harrat 'Uwayrid	1900	Madinah	640 AD	
Harrat Lunayyir	1370	Ummlujj/Tabuk	1000 AD	Active
Harrat Ithnayn	1625	Ha'il	eruptions in past 1500 years	
Harrat Khaybar	2093	Madinah	650 AD	
Harrat Rahat	1744	Jeddah-Madinah	1292?,1256,641 AD	
Harrat Kishb	1475	Cental Saudi Arabia	no recent eruptions	
Harrat al Birk	381	North of Jizan	maybe in the past 100 years	
Jabal Yar	305	Jizan	1810 AD	

Source: John Seach, Volcanoes of Saudi Arabia http://volcano.asia/saudi.html

Geothermal Energy System - Heat Source

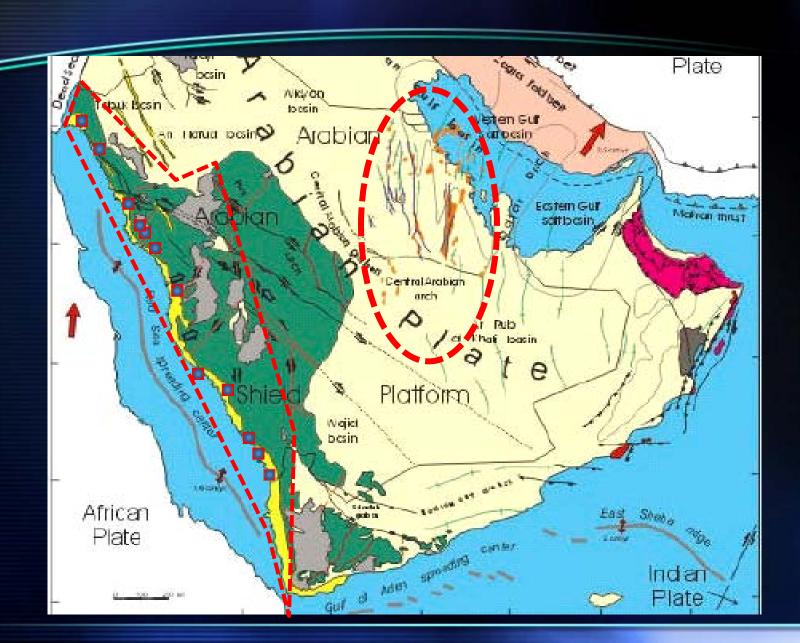
Steam fumarole in an eroded lava flow in Harrat Khaybar.

Source: Saudi Geological Survey (SGS).

Geothermal Energy System – Heat Source

This crater, which is about 200 m deep and 2 km wide, resulted from a phreatic explosion caused by the near-instantaneous generation of steam at the contact between rising magma and ground water.

(Source SGS)


Geothermal Energy System – Heat Source

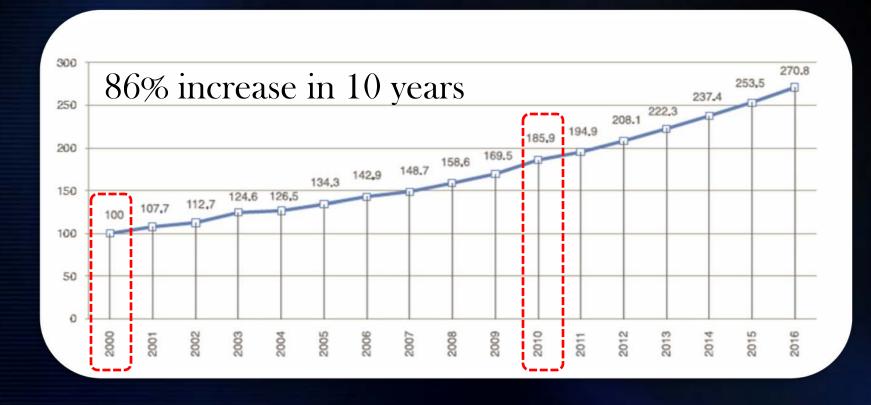
Name	Latitude	Longitude	Temperature	Flow Rate	Aquifer
Ivalile	Lamude	Longitude	-		1 - 1
			(°C)	(L/min)	type
Ain Khulab (Gizan)	16°45N	43°07E	75.5	1 - 2	TS*
Wadi Khulas (Gizan)			31.4	10.0	Wadi
wadi Kilulas (Gizali)	-	-	31.4	10.0	waui
Ain Khulab Quwa (Gizan)	16°48N	43°12E	59.0	2.0	TS*
			•		
Ain al Wagrah (Gizan)	17°03N	42°59E	55.0	1.5	TS*
Tim at wagian (Ciral)	27 0021	.2 332	55.0	2.0	1~
Air al Wassals Dans (Cines)	1.700.2NT	42050E	50.0	20.0	TC*
Ain al Wagrah Dam (Gizan)	17°03N	42°59E	59.0	20.0	TS*
Ain al Harra (Al Lith)	20°29N	40°28E	79.0	4 - 5	TS*
			_		
Ain al Jumah (Al Lith)	20°18N	40°42E	46.0	0.3	TS*
2 mi di vandi (2 m Eldi)	20 101	10 42L	40.0	0.5	15
A' 36 1 (A17'4)	2002227	400000	46.0	0.0	TEC *
Ain Markus (Al Lith)	20°33N	40°09E	46.0	0.3	TS*
Ain al Darakah (Al Lith)	20°39N	40°01E	39.5	0.1	TS*
			•		
*TC Thormal Spring					

*TS - Thermal Spring

Thermal Springs in Saudi Arabia

Geothermal Energy System – Reservoir

Geothermal Energy System – Water Source


Potential Geothermal Site in Jizan

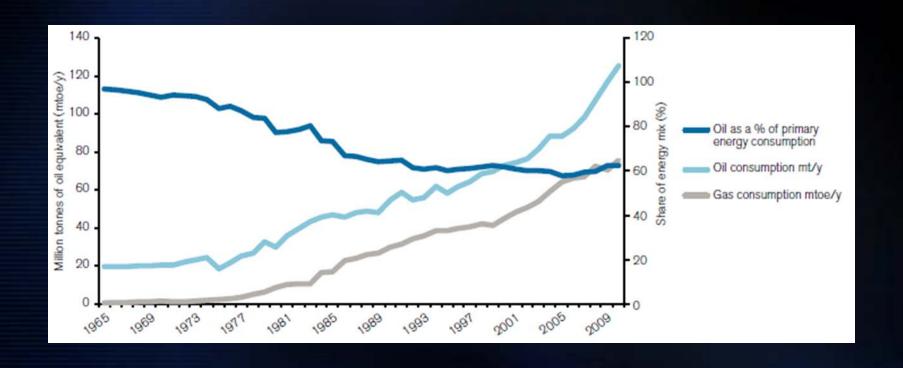
Geothermal Energy System – Water Source

Potential Geothermal Site in Jizan

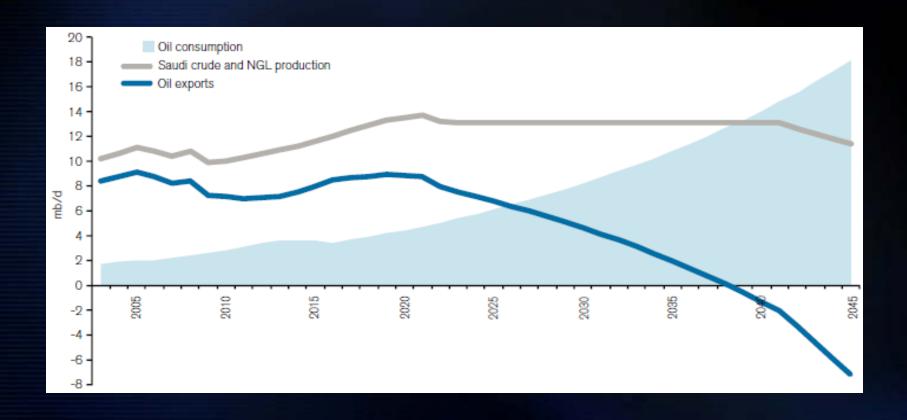
Relative Growth Level of Produced Energy 2000-2010

Peak Demand Forcast by Region

REGION			Average	Crawala				
	2011	2013	2015	2017	2019	2021	Annual Growth	Growth 11' - 21'
Eastern	14.3	15.9	17.4	19.2	21.4	24.5	7%	71%
Central	14.3	15.9	17.2	18.6	20.0	21.5	5%	50%
Western	14.2	15.7	17.0	18.4	19.9	21.6	5%	52%
Southern	3.6	4.5	5.1	5.8	6.5	7.2	10%	98%
Total	46.5	52.0	56.8	61.9	67.7	74.8	6%	61%


Peak Demand Forcast by Sector

SECTOR			Average Annual	Future Growth					
	2011	2013	2015	2017	2019	2021	Growth	11' - 21'	
Residential	27.0	30.1	32.9	35.7	38.8	42.2	5%	56%	
Commercial	4.8	5.4	6.1	6.7	7.4	8.4	7%	74%	
Government	57	6.1	6.5	6.8	7.1	7.5	3%	34%	
Industrial	5.6	9.3	10.4	11.6	13.2	15.6	8%	90%	
Ag & Other	8.2	1.0	1.0	1.1	1.1	1.2	3%	33%	
Total	46.5	52.0	56.8	61.9	67.7	74.8	6%	61%	


Fuel Consumption by Region

Fuel consumption SEC	2008					2009				2010			
	Gas	Crude	HFO	Diesel	88	Crude	HFO	Diesel	Gas	Crude	HFO	Ciesel	
	Million M ⁸	villion M ² Tonne			Million M ^a	Tonne			Million M ² Tonne				
East	15,235	321,600	0	1,022,897	12,758	3,164,675	0	1,199,003	11,443	3,484,757	0	1,387,608	
Central	8,906	4,234,739	00	1,497,888	9,340	4,558,431	0	1,349,330	8,483	5,172,275	00	1,807,978	
West	0	3,165,718	6,949,185	3,665,976	0	7,173,020	3,880,873	4,109,658	0	9,562,130	2,482,811	4,076,487	
South	0	1,233,487	0	3,901,700	0	1,507,309	0	4,129,802	0	1,462,733	0	3,711,081	
Total	24,141	8,955,544	6,949,185	10 088 459	22 _, 095	16,403,436	3,880,873	10,787,794	19,926	19,681,895	2,482,811	10,983,152	
Estimation on diesel consumption for off- grid systems				208,609				280,348				294,957	

Saudi Arabia's historical energy consumption pattern

Saudi Arabia's Oil Balance

Summary

- > There is a good potential for geothermal Energy in Saudi Arabia
 - Heat sources are available in several locations along the Red Sea
 - Reservoirs are also available:
 - Oil/gas wells penetrated ~ 15000 ft within the sedimentary section.
 - Oil/gas found in some of these wells .
 - Water resources are short but sea water and/or waste water can be used
- > Saudi Arabia has the ability and technical experience in:
 - Exploration & Drilling
 - Sea water treatment and injection
 - Reservoir management
- >Utilizing the geothermal resources will reduce the amount of oil & gas burned for Electricity generation.
- >It will make important industrial and economic Impact in Southern and Western regions

Thank you

Energy Sectors (Regions) in Saudi Arabia

