The Distribution and Resource Potential of Oil Sands in China*

Xuanlong Shan¹ and Honghao Luo¹

Search and Discovery Article #80232 (2012)**
Posted July 2, 2012

*Adapted from oral presentation given in Singapore at the Geoscience Technology Workshop (GTW) on Unconventional Hydrocarbons, 15-16 March 2012

**AAPG©2012 Serial rights given by author. For all other rights contact author directly.

¹Jilin University, Changchun, China

General Comments

Oil-sand resources are found in Cenozoic and Mesozoic strata, with the presence of oil sands in units of the former age accounting for 1.098 billion tons (18.4% of the country’s total) and 3.933 billion tons (65.9% of the national total) in units of the latter age. Oil sands are also present in Upper and Lower Paleozoic layers, accounting for 560 million tons (9.38% of the country’s total), of which 378 million tons (6.33% of the national total) are recoverable.

The geological resources stored in 11 basins total 5.842 billion tons (97.6% of the total in China), of which 3.241 billion tons are recoverable (98.2% of the total).

Selected References

The Distribution and Resource Potential of Oil Sands in China

Shan Xuanlong Luo Honghao

Jilin University Changchun China
2012.3.15
Contents

• 1、Introduction

• 2、Distribution of oil sands in China (HOW?)

• 3、Oil-gas geologic conditions determining the distribution of oil sands in large petroliferous basins (WHY?)

• 4、Basin characteristics and the effect of tectonic activity on the favorable zones of oil sands (WHERE?)

• 5、Resource-potential analysis
The total recoverable resource from oil sands is up to 651 billion bbl (103.51 × 10⁹ m³), or 32.0% of the total recoverable resource of oil in the world. The resource volumes of oil sands in Alberta Basin and East Siberia Basin were estimated at close to 382.5 and 366.9 billion tons in 2010.

QUESTION: HOW ABOUT CHINA?
3 differences of distribution of oil sands in China:

- **Regional difference**
- **Basinal difference**
- **Geological time difference**
2. Uneven regional distribution of oil sands

<table>
<thead>
<tr>
<th>region</th>
<th>Geological resources (billion)</th>
<th>Percentage (%)</th>
<th>Recoverable resources (billion)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West</td>
<td>3.289</td>
<td>55.1</td>
<td>2.064</td>
<td>62.5</td>
</tr>
<tr>
<td>Tibet</td>
<td>0.974</td>
<td>16.3</td>
<td>0.261</td>
<td>7.9</td>
</tr>
<tr>
<td>Centre</td>
<td>0.726</td>
<td>12.2</td>
<td>0.449</td>
<td>13.6</td>
</tr>
<tr>
<td>East</td>
<td>0.531</td>
<td>8.9</td>
<td>0.331</td>
<td>10</td>
</tr>
<tr>
<td>South</td>
<td>0.45</td>
<td>7.5</td>
<td>0.198</td>
<td>6</td>
</tr>
</tbody>
</table>
• **2.2 Oil sands developed in many geological units**

<table>
<thead>
<tr>
<th>Area</th>
<th>Horizon</th>
<th>Sedimentation and facies</th>
<th>Period of reservoir formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern</td>
<td>K₁</td>
<td>River and lake facies</td>
<td>Yanshanian, Himalayan period</td>
</tr>
<tr>
<td>Central</td>
<td>J₁D₁, K₁, T₂₃</td>
<td>River and lake facies, Litteral and shallow sea facies</td>
<td>Late Yanshanian, Himalayan period</td>
</tr>
<tr>
<td>Western</td>
<td>K₁J₁, T₂₃</td>
<td>River and lake facies, braid deltas, Alluvial fan facies</td>
<td>Yanshanian, Himalayan period</td>
</tr>
<tr>
<td>Southern</td>
<td>N₁E₂</td>
<td>River and lake facies, Alluvial fan facies Delta facies</td>
<td>Himalayan period</td>
</tr>
<tr>
<td>Qinghai-Tibet</td>
<td>J₂E₂</td>
<td>Sedimentary facies associated with lagoons, tidal flats, sandy banks, biogenic reefs, and tidal-flat facies</td>
<td>Late Yanshanian, Himalayan period</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lake, underwater fan, fan deltas, proluvial fan facies</td>
<td>Himalayan period</td>
</tr>
</tbody>
</table>

Oil-sand resources are found in Cenozoic and Mesozoic strata, with the presence of oil sands in units of the former geological time accounting for 1.098 billion tons (18.4% of the country’s total) and 3.933 billion tons (65.9% of the national total) in units of the latter age. Oil sands are also present in Upper and Lower Paleozoic layers, accounting for 560 million tons (9.38% of the country’s total), of which 378 million tons (6.33% of the national total) are recoverable.
2. The significant difference of oil-sand resources of different basins

-

The geological resources stored in these 11 basins total 5.842 billion tons (97.6% of the total in China), of which 3.241 billion tons are recoverable (98.2%).

Fig. 1 Distribution of oil-sand resources in China (after Shan Xuanlong, 2007)
Principal oil sands deposits

Northwest Junggar deposits

Northwest Sichuan deposits

The northwest distribution area of Longmenshan
Oil sands outcrop in Houshanshuiiku

Oil sands outcrop in Pingliang ditch

Heiyoushan oil spring
ZK64 Producing Picture

High-oil content, High-quality oil
QUESTION: Why are oil sands distributed mainly in the basins?
3. Oil-gas geologic conditions determining the distribution of oil sands in large petroliferous basins

- 3.1 Abundant oil supply
- 3.2 Considerable Mesozoic and Cenozoic tectonic activity
- 3.3 Existence of large-scale oil-gas migration pathways
3.1 Abundant oil supply

- **Oil may come from three primary sources**

- 1). Crude oil from basin center that has migrated to the surface or shallow reservoirs in *basinal uplift or slope area*

The oil sand reservoir forming pattern of western slope in Songliao basin (after Zhang Weiqin, 2005)
3.1 Abundant oil supply

- Oil may come from three primary sources
 - 2). Crude oil in sandstone resulting from the direct uplift of *paleo-reservoirs* to the surface by *tectonic movement*

The evolution of the reservoir (after Liu Dongcheng, 2009)
3.1 Abundant oil supply

- crude oil in paleo-reservoirs that migrated to surface or shallow reservoirs through the faults or unconformity layers

The oil sand reservoir forming pattern of Houba oil sands
3.1 Abundant oil supply

3). crude oil in paleo-reservoirs that migrated to surface or shallow reservoirs through the faults or unconformity layers

Comparison Diagram of group composition (after Huang Dipan 2008)
• During oil-sand formation, a considerable amount of crude oil is lost.

The oil sands in Junggar basin have experienced severe degradation.

• Therefore, oil-sand deposits form in basins with abundant oil and gas.
3.2 Considerable Mesozoic and Cenozoic tectonic activity

- Research in China has revealed a strong correlation between oil sands and regions that experienced considerable Mesozoic and Cenozoic tectonic activity (particularly associated with the Himalayan movement)

1) Exhumation and uplift of basins in western China

- Crude oil also migrated to the basin slope and uplift area through oil-gas migration pathways.

The distribution of oil sands in Junggar basin in western China
3.2 Considerable Mesozoic and Cenozoic tectonic activity

2) The rift basins in eastern China

- In the eastern rift basins in China, tectonic movement caused hydrocarbons from source rocks to migrate to the surface via the fault and unconformity surfaces, forming oil sands.

![Diagram of oil sands formation in the Songliao Basin](After Bai Wenhua et al., 2009)
3) The transition basins in the central and southern regions

- Basins in the central and southern regions were affected by Mesozoic and Cenozoic tectonic activity, with basin uplift and stratum denudation exposing the paleo-reservoirs. Crude oil then formed oil sands or bitumen deposits through loss, oxidation, and degradation.

- The Houba oil sands in Sichuan basin: the shallow layer sandstone of Shaximiao formation and the oil sands are in Jurassic series; the asphalt in fine sandstone in small thrust fault belt.
3.3 Existence of large-scale oil-gas migration pathways

- The crude oil in oil-sand deposits may come from the oil-generating center of the basin or the paleo-reservoir. Regardless of the origin, the existence of large-scale oil-gas migration pathways is necessary, and ultimately determines the formation and distribution of oil sands.

The oil-sand deposits on the western slope of Songliao basin: Oil source comes from Qijia-Gulong depression

The reservoir-forming pattern on western slope in Songliao basin (after Zhang Wei, 2005)

QUESTION: In which parts of the basins are oil sands distributed?
4. Basin characteristics and the effect of tectonic activity on the favorable zones of oil sands

4.1. Transitional belts between basins and mountain belts of Mesozoic and Cenozoic strong tectonic activity in "extrusion" background

4.2. Reverse structural belts in extensional basins

4.3. Large-scale uplift and slope belts of superimposed oil-gas basins

4.4. Paleo-reservoir structures in residual oil-gas basins formed by uneven uplift during the late "fossil" plate period
Compressional basin are mainly developed in western mainland of China. Since the Cenozoic, orogenic movement obviously happened in the western region and oil sands are mainly distributed in transitional belt between basin and mountain or large-scale uplift belt or uplift structure in oil-generating depression, where strong tectonic activity occurred.
4.1、Transitional belts between basins and Mountain belts of Mesozoic and Cenozoic strong tectonic activity in "extrusion" background

For example, the oil sands of Junggar basin experienced late Hercynian and the Indo-China Yanshanian and Himalayan deformation. Tectonic activity during many periods created reservoirs; the reservoirs were exposed; a considerable amount of oil and gas was lost, forming the oil-sand deposits present today.

The oil sands in Junggar Basin
4.2 Inversion in structural belts in extensional basins

The basins found in eastern China are rift basins that formed during the Mesozoic and Cenozoic eras. Tectonic inversion during the late Yanshan or Himalayan period created the oil sands on the slopes or uplifts.

For example, the oil-sand deposits on the western slope of Songliao basin were derived from the oil-gas in the central depression of the Qingshankou Formation.
4.3 Large-scale uplift and slope belts of superimposed oil-gas basins

A transition zone known as the Central Superimposed Basins Group lies between the eastern rift basins and the western compression basins. In the central part of the country, oil sands are found either in the anticline belt or the fault block in the "subprime" sag of basins. Thus, the uplift belt on the edge of the basin formed as a result of strong tectonic movement during the Mesozoic and Cenozoic eras.

The Houba oil-sand deposits on the slope of Sichuan basin

Distribution of Houba oil-sand metallogenic belt
4.4、Paleo-reservoir structures in residual oil-gas basins formed by uneven uplift during plate movement in late geological periods

Platform basins are primarily found in Yunnan, Guangxi, and Guizhou. Most are depression or fault basins in the surface layer of the Yangzi Platform. A small number of basins are superimposed above the fold belt of southern China Oil sands deposits in the form of asphalt found in the paleo-reservoir structure belts of residual oil-gas basins formed by uneven uplift of the Yangzi Plate during late geological periods.

i.e., Guizhong depression is developed in depression or fault basin after multiple-phase deformation.
5. Resource-potential analysis

- China's oil-sand resources as an important complement to conventional oil-gas resources.

2010.3.22 – 3.24, Canada oil and gas technology workshop
5.1 Development of oil-sand deposits to combat high oil prices

1) mining

2) extract

3) upgrading

4) Environment Recovery

Surface Mining:
The mining depth is less than 50-75m and operation cost is 8-12 dollars/bbl

In situ recovery:
The operation cost of N-SOLV technology provided by Hatch Company of Canada is 34 dollars/bbl
5.2、Development of oil sands recovery technology

- With technological developments, the different types of steam, solvents and well tube structure are mainly used for oil-sand recovery technologies and they are often developed or combined with several kinds of characteristics for adapting to the different type of oil sand mine exploration, especially the development of horizontal well technology, with a qualitative leap of in situ recovery technology.

N-SOLV: With N-SOLV, the most advanced technology, 65-75% of the oil in oil sands can be recovered.
5.3 An important complement to conventional oil-gas resources

- **Oil-sand resources are rich in China where there are 3.302 billion tons of recoverable resources.**

- **340 million tons recoverable resources within the shallow surface of 100 m with the advantages of shallow burial, higher oil content and higher mining value, which provides resource assurance for oil-sand exploitation.**

- **The Junggar, Tarim, Qaidam, Songliao and Sichuan basin are key areas and further exploration target areas for oil sands.**
Tumuji deposit——hot chemical water wash (85 ℃)

- Oil content (%): 12.4%
- 85 ℃ hot water wash
- 5% consistency of chemical Solvent
- Time: half hour
- Efficiency: 95%

Inner Mongolia oil-sand oil
Organic solvent extraction

Agitation: half hour, Efficiency: 95%
Xingjiang oil-sand deposits —— dry distillation
It is a fit for northwest China oil-sand deposits.
recovery efficiency: 70%

Carbonization for different temperature

180 280 380 480
Horizontal-stove dry distillation

Computer control system horizontal stove
First barrel oil by dry distillation, Wuerhe, Xingjiang
First producing well, Zhenlai Oil Sands, in western slope of Songliao Basin
Thank you!