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Abstract

Many currently producing shale-gas reservoirs are overmature oil-prone source rocks containing Type | or Type Il kerogen. Key
characterization parameters are: total organic carbon (TOC), maturity level (vitrinite reflectance), mineralogy, thickness, and organic
matter type (OMT). Recent studies indicate that although organic-rich shale-gas formations may be hundreds of meters in gross thickness
(and may appear largely homogeneous), the vertical variability in the organic richness and mineralogy can vary on relatively short vertical
scales (e.g., 10’s centimeters - 1 meter). The vertical heterogeneity observed can be directly tied back to geologic and biotic conditions
when deposited. The accumulation of organic-rich rocks (ORRS) is a complex function of many interacting processes that can be
summarized by three main control variables: rate of production, rate of destruction, and rate of dilution. The marine realm includes three
physiographic settings that accumulate significant organic-matter-rich rocks: constructional shelf margin, platform/ramp, and continental
slope/basin. In general, the fundamental geologic building block of shale-gas reservoirs is the parasequence, or its equivalent, and
commonly 10’s to 100’s of parasequences comprise the organic-rich formation whose lateral continuity can be estimated, using techniques
and models developed for source rocks.

Many geochemical and petrophysical techniques developed to characterize organic-rich source rocks in the oil-generation window
(R0o=0.5-1.0) can be applied, sometimes with modification, to shale-gas reservoirs that currently exhibit high thermal maturity (Ro=1.1 -
4.0). Well logs can be used to calculate TOC, porosity, and hydrocarbon saturation, but in clay-rich mudstones, the fundamental definition
of porosity is complicated by the high surface area of clay minerals (external and sometimes internal), the volume of surface water, and the
presence of water held by capillary forces in very small pores between silt and clay size mineral grains. Moreover, SEM images of ion-
beam-milled samples reveal a separate nano-porosity system contained within the organic matter, and the gas may be largely contained in
these organic pores.

The use of high-vertical-resolution standard logs and borehole image logs enhances the interpretation of vertically heterogenous shale-gas
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formations. It is important to keep in mind that kerogen occupies a much larger volume percent (vol%) than is indicated by the TOC
weight percent (wt%); this is because of the low grain density of the organic matter (typically 1.1-1.4 g/cc) compared to that of common
rock-forming minerals (2.6-2.8 g/cc). Well logs play a critical role in characterizing and quantifying shale-gas resources.
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Controls On Organic-Richness’.
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Maturity Effect on Well Log Response e
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Sampling for Lab Comparison ~ - 5

* Preserved shale samples were used in the studies

 Parts of same sample were sent to 3-5 different commercial
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Key Parameters for Shale Gas = \5
Sample Evaluation g

« Total Organic Carbon (TOC) wt%
* Maturity (Ro %) —
-Vitrinite Reflectance Equivalent
- Biomarkers — maturity indicator
- Carbon Isotopes — related to maturity
« Geochemical parameters (HC type and quality)
- Fluid inclusions
- Wetness (C2-C5)
- API Gravity (tight oil)
« Total Porosity — crushed rock total porosity method
« Water Saturation (total)
 Adsorbed gas volume (scf/ton)
» Free gas — typically calculated from logs
* Permeability — steady state flow recommended
« Microscopy
- Thin Sections — optical microscopy
- Scanning Electron Microscopy (SEM/EDS)
- Focus lon Beam - SEM
» Lithology/mineralogy
- XRD/XRF
« Geomechanical Properties (Young’'s Modulus, Poisson's ratio)
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Molecular Sizes and Organic Pores™
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Summary 2

» Shale-gas reservoirs are overmature oil-prone source rocks

 The parasequence is the fundamental building block of shale
gas reservoirs

e Porosity, TOC, and gas content are all positively correlated
for shale-gas reservoirs Ro 1-3+)

* Free gas likely to be largely in organic-matter porosity

e Gas-filled porosity (BVG) is better characterization term than
Sg

* The porosity system for fluids in organic-rich systems evolves
with increasing maturity and is influenced by matrix lithology
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Abstract

Many currently producing shale-gas reservoirs are overmature oil-prone source rocks. Through burial and heating these reservoirs
evolve from organic-matter-rich mud deposited in marine, lacustrine, or swamp environments. Key characterization parameters
are: total organic carbon (TOC), maturity level (vitrinite reflectance). muineralogy, thickness, and organic matter type. Hydrogen-
to-carbon (HI) and oxygen-to-carbon (OI) ratios are used to classify organic matter that ranges from oil-prone algal and
herbaceous to gas-prone woody/coaly material

Although organic-matter-rich intervals can be hundreds of meters thick, vertical variability in TOC is high (<1-3 meters) and is
controlled by stratigraphic and biotic factors. In general. the fundamental geologic building block of shale-gas reservoirs is the
parasequence, and commenly 10°s to 100’s of parasequences comprise the organic-rich formation whose lateral continuity can be
estimated using techniques and models developed for source rocks.

Typical analysis techniques for shale-gas reservoir rocks include: TOC, X-ray diffraction. adsorbed/canister gas, vitrinite
reflectance, detailed core and thin-section descriptions. porosity, permeability, fluid saturation. and optical and electron
microscopy. These sample-based results are combined with full well-log suites. including high resolution density and resistivity
logs and borehole images, to fully characterize these formations. Porosity, fluid saturation. and permeability derived from core can
be tied to log response; however, several studies have shown that the results obtained from different core analysis laboratories can

vary significantly, reflecting differences in analytical techmique, differences in definitions of findamental rock and fluid properties, et $0 vor% TOC
or the millimeter-scale variability common in mudstones that make it problematic to select multiple samples with identical rvc';c r__.»>
attributes. v Solid! ) v
( )
o i ; - (Sotid) e
Porosity determination in shale-gas mudstones is complicated by very small pore sizes and, thus, large surface area (and associated "n'nf\,";':"";h

surface water): moreover, smectitic clays that are commonly present in mud have interlayer water, but this clay fanuly tends to be
minimized in high maturity formations due to illitization. Finalty, SEM images of ion-beam- milted samples reveal a separate nano- el
porosity system contained within the organic matter. possibly comprising =50% of the total porosity. and these pores may be oc TOC s apgromnedy
hydrocarbon wet. at least during most of the thermal maturation process. A full understanding of the relation of porosity and gas 20 vt of B fock

content will result in development of optimized processes for hydrocarbon recovery in shale-gas reservoirs.

WORATH 1S BOW DOres,
the vohame Impacied

~20 volume % of the rock

Introduction/Background

The term “unconventional reservoirs™ covers a wide range of hydrocarbon-bearing formations and reservoir types that generally do
not produce economic rates of hydrocarbons without stinmlation. Common terms for such “unconventional™ reservoirs include:
Tight-Gas Sandstones, Gas Hydrates, Oil Shale formations. Heavy Oil Sandstones. and Shale Gas, among others. The focus of this
paper is to discuss the geological genesis and characterization of the class of “unconventional” reservoirs commeonly termed Shale
Gas.

Shale is a term that has been applied to describe a wide variety of rocks that are composed of extremely fine-grained particles,
typically less than 4 mucrons in diameter. but may contain variable amounts of silt-size particles (up to 62.5 microns). In






