Unconventional Hydrocarbon Resource Plays in Pakistan: An Overview Awakening a South East Asian Sleeping Giant-Technological Solutions to Unlock the Vast Unconventional Reserves of Pakistan*

S. Areeba Ayaz¹, Batool Arhamna Haider², Kiran Ismail³, and Peter Mark Smith⁴

Search and Discovery Article #80216 (2012)**
Posted May 28, 2012

*Adapted from oral presentation given in Singapore at the Geoscience Technology Workshop (GTW) on Unconventional Hydrocarbons, 15-16 March 2012
**AAPG©2012 Serial rights given by author. For all other rights contact author directly.

¹University of Queensland, Australia.
²Application Engineer, Weatherford, Singapore
³Operations Assistant, Weatherford, Singapore
⁴Presenter; Weatherford Singapore (PeterMark.Smith@ap.weatherford.com)

Summary

Sedimentary basins of Pakistan, on broad scale, are: Indus (upper, central southern [and lower]) in the east, Baluchistan, and Pishin. Upper Indus basin is geologically complex and oil-prone. Central Indus is the major gas producing area of Pakistan; it has unconventional plays. Southern Indus has both oil- and gas-prone areas, with unconventional resources. Thar Coal in the lower Indus basin contains great potential as CBM reservoir.

Baluchistan basin is thought to be prospective both in conventional and unconventional resources. Offshore Makran coast is considered to have significant hydrate potential.

Selected References

Website

Unconventional Hydrocarbon Resource Plays in Pakistan: An Overview

S. Areeba Ayaz, PhD Candidate at University of Queensland, Australia.

Awakening a South East Asian Sleeping Giant- Technological Solutions to Unlock the Vast Unconventional Reserves of Pakistan

Batool Arhamna Haider, Application Engineer
Kiran Ismail, Operations Assistant
Presented by Peter Mark Smith – Weatherford Singapore

Pakistan has:
- 2nd largest salt mine
- 5th largest gold mine
- 9th largest coal reserves
- 7th largest copper mine

Pakistan is:
- 11th largest wheat producer
- 12th largest rice producer
- 5th largest milk producer
Unconventional Hydrocarbon Resource Plays in Pakistan: An Overview

S. Areeba Ayaz, PhD Candidate at University of Queensland, Australia.

Awakening a South East Asian Sleeping Giant—Technological Solutions to Unlock the Vast Unconventional Reserves of Pakistan

Batool Arhamna Haider, Application Engineer
Kiran Ismail, Operations Assistant
Presented by Peter Mark Smith – Weatherford Singapore

Pakistan has:
- 2nd largest salt mine
- 5th largest gold mine
- 5th largest coal reserves
- 7th largest copper mine

Pakistan is:
- 11th largest wheat producer
- 12th largest rice producer
- 5th largest milk producer
Introduction of Authors

Syeda Areeba Ayaz has served Weatherford Oil Tool Middle East Limited for one year as Petroleum Geologist. She has worked actively in the fields of geology and geochemistry for Coal Bed Methane (CBM) and shale gas projects in Pakistan. Ayaz is currently a PhD candidate at the University of Queensland, working on CBM basin studies in Australia. In addition, she holds a master’s degree in geochemistry from the University of Karachi. During the 2009-2010 school year, she served as president of the University of Karachi’s AAPG student chapter and has received various awards, including Weatherford’s Innovation Award on shale gas and two gold medals for excellence in academics.

Batool Arhamna Haider is currently working as the Application Engineer for Artificial Lift Systems at Weatherford Oil Tool Middle East Ltd. She has authored several papers and has been awarded various honors, awards and distinctions on both national and international levels. Batool has served as the Chief Editor of Petrospective, the annual magazine of the Petroleum Department, NED University of Engineering & Technology. She is also a member of the prestigious Network of Excellence in Energy Development NED Research Association, Pakistan. Batool is a graduate of NED University with a degree in Petroleum Engineering.

Sedimentary Basins of Pakistan

- Indus basin
- Baluchistan basin
- Pishin basin
Conventional Exploration Status

- Total explored area in Pakistan = 2,750,000 sq. km
- Unexplored area in Pakistan = 5,500,000 sq. km

Geology & Play Fairway Maps of Unconventional Hydrocarbons in Different Basins of Pakistan
Conventional Exploration Status

Total explored area in Pakistan = 2,750,000 sq. km
Unexplored area in Pakistan = 5,500,000 sq. km

30 tcf conventional gas

Geology & Play Fairway Maps of Unconventional Hydrocarbons in Different Basins of Pakistan
Upper Indus Basin

- Upper Indus basin is further divided into Potwar sub-basin in the east and Kohat sub-basin in the west
- Geologically complex area
- Possesses rocks from Precambrian era to recent times
- Challenging drilling environment due to abnormally high pressure sands
- Oil-prone basin
- Unconventional hydrocarbon resources present (not tested yet)

Central Indus Basin

- Major gas producing area of Pakistan
- Rocks from Precambrian to recent times are present
- Possible regions of tight and shale gas
- Shales with swelling and cave-in tendency
- Highly jointed and fractured formations
- Hot sands are also present
Upper Indus Basin

- Upper Indus basin is further divided into Potwar sub-basin in the east and Kohat sub-basin in the west
- Geologically complex area
- Possesses rocks from Precambrian era to recent times
- Challenging drilling environment due to abnormally high pressure sands
- Oil-prone basin
- Unconventional hydrocarbon resources present (not tested yet)

Central Indus Basin

- Major gas producing area of Pakistan
- Rocks from Precambrian to recent times are present
- Possible regions of tight and shale gas
- Shales with swelling and cave-in tendency
- Highly jointed and fractured formations
- Hot sands are also present
Unconventional Hydrocarbon Plays in Central Indus Basin

Possible fairway map of tight gas sands and shale gas in Lower Goru

Southern Indus Basin

- It possess both oil and gas prone areas
- Rocks from Triassic to recent times are present in the basin
- Compact sands and fractured limestones
- Shales with swelling ability
- High pressure zones in southwestern part of basin
- Tight sands, shale gas and CBM resources are present
Unconventional Hydrocarbon Plays in Central Indus Basin

Southern Indus Basin

- It possess both oil and gas prone areas
- Rocks from Triassic to recent times are present in the basin
- Compact sands and fractured limestones
- Shales with swelling ability
- High pressure zones in southwestern part of basin
- Tight sands, shale gas and CBM resources are present
Unconventional Hydrocarbons in Southern Indus Basin

Possible Fairway map of Unconventional gas in Southern Indus Basin
Fairway map of tight gas and shale gas in Lower Goru
Fairway of CBM in Bara Formation

Geology of Baluchistan Basin

- Bounded by Chaman transform fault in the east, Iran in west, offshore Makran in south and Afghanistan in north
- Basin is thought to be prospective for oil/gas and minerals, but there had been no discoveries yet due to lack of geological understanding, sparse drilling and lack of available infrastructure
- Oil and Gas seepages in various areas show that hydrocarbons have been generated in basin
- Sedimentary rocks exposed in basin ranges from Cretaceous to recent
- Possible reservoirs of methane hydrates near Makran coast
Unconventional Hydrocarbons in Southern Indus Basin

Possible Fairway map of Unconventional gas in Southern Indus Basin
Fairway map of tight gas and shale gas in Lower Goru
Fairway of CBM in Bara Formation

Geology of Baluchistan Basin

- Bounded by Chaman transform fault in the east, Iran in west, offshore Makran in south and Afghanistan in north
- Basin is thought to be prospective for oil/gas and minerals, but there had been no discoveries yet due to lack of geological understanding, sparse drilling and lack of available infrastructure
- Oil and Gas seepages in various areas show that hydrocarbons have been generated in basin
- Sedimentary rocks exposed in basin ranges from Cretaceous to recent
- Possible reservoirs of methane hydrates near Makran coast
Exploitation & Development Challenges

- Evaluation Uncertainties
- High Investment
- Longer Production Time
- Longer Payout Time
- High Density of Wells
- Skilled Manpower
- Environmental Issue
- Political Stability
- Willingness to Accept Challenges

Shale Gas in Pakistan
Exploitation & Development Challenges

- Evaluation Uncertainties
- High Investment
- Longer Production Time
- Longer Payout Time
- High Density of Wells
- Skilled Manpower
- Environmental Issue
- Political Stability
- Willingness to Accept Challenges

![Resolvable](Image1)

Shale Gas in Pakistan
48 Shale gas basins, 32 countries

EIA Report, April 2011

EIA Estimates - Technically Recoverable Shale

<table>
<thead>
<tr>
<th>Continent</th>
<th>Risked Gas In-Place (Tcf)</th>
<th>Risked Technically Recoverable (Tcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>3,856</td>
<td>1,069</td>
</tr>
<tr>
<td>South America</td>
<td>4,969</td>
<td>1,225</td>
</tr>
<tr>
<td>Europe</td>
<td>2,567</td>
<td>624</td>
</tr>
<tr>
<td>Africa</td>
<td>3,962</td>
<td>1,042</td>
</tr>
<tr>
<td>Asia</td>
<td>5,661</td>
<td>1,494</td>
</tr>
<tr>
<td>Australia</td>
<td>1,381</td>
<td>396</td>
</tr>
<tr>
<td>Total</td>
<td>22,016</td>
<td>5,760</td>
</tr>
</tbody>
</table>

Asia

<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
<th>Risked Gas In-Place (Tcf)</th>
<th>Risked Technically Recoverable (Tcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI. China</td>
<td></td>
<td>5,101</td>
<td>1,275</td>
</tr>
<tr>
<td>XII. India/Pakistan</td>
<td>India</td>
<td>290</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Pakistan</td>
<td>206</td>
<td>51</td>
</tr>
<tr>
<td>XIII. Turkey</td>
<td>64</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5,661</td>
<td>1,494</td>
<td></td>
</tr>
</tbody>
</table>
48 Shale gas basins, 32 countries.............

EIA Report, April 2011

EIA Estimates- Technically Recoverable Shale

<table>
<thead>
<tr>
<th>Continent</th>
<th>Risked Gas In-Place (Tcf)</th>
<th>Risked Technically Recoverable (Tcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>3,856</td>
<td>1,069</td>
</tr>
<tr>
<td>South America</td>
<td>4,569</td>
<td>1,225</td>
</tr>
<tr>
<td>Europe</td>
<td>2,567</td>
<td>624</td>
</tr>
<tr>
<td>Africa</td>
<td>3,962</td>
<td>1,042</td>
</tr>
<tr>
<td>Asia</td>
<td>5,661</td>
<td>1,404</td>
</tr>
<tr>
<td>Australia</td>
<td>1,381</td>
<td>396</td>
</tr>
<tr>
<td>Total</td>
<td>22,016</td>
<td>5,760</td>
</tr>
</tbody>
</table>

Asia

<table>
<thead>
<tr>
<th></th>
<th>XL. China</th>
<th></th>
<th>XII. India/Pakistan</th>
<th></th>
<th>XIII. Turkey</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5,101</td>
<td></td>
<td>63</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>India</td>
<td></td>
<td>290</td>
<td></td>
<td>206</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pakistan</td>
<td>206</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5,661</td>
<td></td>
<td>1,404</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential Shale Basins in Pakistan

Number of shale formations are prospective with various challenges:

<table>
<thead>
<tr>
<th>Lower Indus Basin</th>
<th>Upper Indus Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale formations are wide spread from north to south</td>
<td>Shale formations are laterally restricted</td>
</tr>
<tr>
<td>Mostly deep > 3000m</td>
<td>Both shallow and deep formations</td>
</tr>
<tr>
<td>In some regions very thick >400m</td>
<td>Thickness is variable</td>
</tr>
</tbody>
</table>

- Prospective formations include:
 - Lower Goru, shale members
 - Sembar Formation
 - Ghazij Formation
 - Mughal Kot Formation
- Prospective formations are:
 - Patala Formation
 - Hangu, Chichali, Datta formations
 - Sardhai Formation

Shales in Lower Indus basin

- Sembar Shale
 - Early Cretaceous shale
 - Proven source rock in the lower Indus basin
 - Grayish black colored silty shale
 - Organic richness and maturity varies with region
 - Kerogen type and maceral varies with region

- Lower Goru shales
 - Early Cretaceous shale, overlain by Sembar
 - Lower Goru is alternating shale and sands
 - It is very brittle as shales have more than 60% silt and lesser amount of clays.

- Other shales
 - Ghazij is Paleocene shale and restricted in few regions with good thickness > 1000m
 - Mughal Kot formation of late Cretaceous, restricted in few areas of Lower Indus basin.
 - Above mentioned shale formations in offshore region can be prospective as well
Potential Shale Basins in Pakistan

Number of shale formations are prospective with various challenges:

<table>
<thead>
<tr>
<th>Lower Indus Basin</th>
<th>Upper Indus Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale formations are wide spread from north to south</td>
<td>Shale formations are laterally restricted</td>
</tr>
<tr>
<td>Mostly deep > 3000m</td>
<td>Both shallow and deep formations</td>
</tr>
<tr>
<td>In some regions very thick >400m</td>
<td>Thickness is variable</td>
</tr>
</tbody>
</table>

- Prospective formations include:
 - Lower Goru, shale members
 - Sembar Formation
 - Ghazij Formation
 - Mughal Kot Formation

- Prospective formations are:
 - Patala Formation
 - Hangu, Chichali, Datta formations
 - Sardhai Formation

Shales in Lower Indus basin

- **Sembar Shale**
 - Early Cretaceous shale
 - Proven source rock in the lower Indus basin
 - Grayish black colored silty shale
 - Organic richness and maturity varies with region
 - Kerogen type and maceral varies with region

- **Lower Goru shales**
 - Early Cretaceous shale, overlain by Sembar
 - Lower Goru is alternating shale and sands
 - It is very brittle as shales have more than 60% silt and lesser amount of clays.

- **Other shales**
 - Ghazij is Paleocene shale and restricted in few regions with good thickness > 1000m
 - Mughal kot formation of late Cretaceous, restricted in few areas of Lower Indus basin.
 - Above mentioned shale formations in offshore region can be prospective as well
Avg. Distribution of Sembar and Lower Goru formations based on TOC and Ro.

This is a generalized distribution. TOC sometimes vary drastically within nearby wells.

Shales in Upper Indus basin

<table>
<thead>
<tr>
<th>Shale Formation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patala formation</td>
<td>Paleocene shale formation with proven source rock potential in upper Indus basin</td>
</tr>
<tr>
<td>Hangu formation</td>
<td>Paleocene shale formation with beds of sand and coal. This formation is at KT-boundary.</td>
</tr>
<tr>
<td>Chichali formation</td>
<td>Green colored, fossiliferous, Cretaceous formation</td>
</tr>
<tr>
<td>Sardhai formation</td>
<td>Permian shale formation with lavender blue color. This restricted in few structures of Upper Indus basin.</td>
</tr>
</tbody>
</table>
| Datta shale | Early Cretaceous formation in upper Indus basin
 • Its variegated formation with sand, shale and coals
 • Datta has its own petroleum system, with shale source and sand reservoir |
Avg. Distribution of Sembar and Lower Goru formations based on TOC and Ro.

This is a generalized distribution. TOC sometimes vary drastically within nearby wells.

Shales in Upper Indus basin

<table>
<thead>
<tr>
<th>Formation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patala formation</td>
<td>Paleocene shale formation with proven source rock potential in upper Indus basin</td>
</tr>
<tr>
<td>Hangu formation</td>
<td>Paleocene shale formation with beds of sand and coal. This formation is at KT-boundary.</td>
</tr>
<tr>
<td>Chichali formation</td>
<td>Green colored, fossiliferous, Cretaceous formation</td>
</tr>
<tr>
<td>Sardhai formation</td>
<td>Permian shale formation with lavender blue color. This restricted in few structures of Upper Indus basin.</td>
</tr>
</tbody>
</table>
| Datta shale | Early Cretaceous formation in upper Indus basin
| | Its variegated formation with sand, shale and coals
| | Datta has its own petroleum system, with shale source and sand reservoir |
Avg. distribution of Patala and other potential shale formations based on TOC and Ro.

This is a generalized distribution. TOC sometimes vary drastically within nearby wells.

Challenges of the Potential Shale formations in Pakistan

<table>
<thead>
<tr>
<th>Formation</th>
<th>Challenges</th>
</tr>
</thead>
</table>
| 1. Lower Goru formation | - Shale member is deep in various regions
 - Geological heterogeneity is present |
| 2. Sembar formation | - Extremely deep in various region
 - Coring issue due to large thickness |
| 3. Patala formation | - Accessibility problems in some areas |

Number of Upper Indus shales like Sardhai, Datta, Chichali, Hangu etc could be prospective shales depending upon their prerequisite geochemical data.
Challenges of the Potential Shale formations in Pakistan

<table>
<thead>
<tr>
<th>Formation</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lower Goru formation</td>
<td>- Shale member is deep in various regions</td>
</tr>
<tr>
<td></td>
<td>- Geological heterogeneity is present</td>
</tr>
<tr>
<td>2. Sembar formation</td>
<td>- Extremely deep in various region</td>
</tr>
<tr>
<td></td>
<td>- Coring issue due to large thickness</td>
</tr>
<tr>
<td>3. Patala formation</td>
<td>- Accessibility problems in some areas</td>
</tr>
</tbody>
</table>

Number of Upper Indus shales like Sardhai, Datta, Chichali, Hangu etc could be prospective shales depending upon their prerequisite geochemical data.
Pakistan can develop shale resources in a number of ways:

- Targeting existing source rock for shale gas
- Attempting to analyze samples of old wells for shale gas characters
- Re-entry of old wells and re-planning of current wells for shale core
- Integration of data and interpreting the best possible zones in country

US – Pak Shale Comparisons

![Shale formations comparison chart](chart.png)

- **Legend parameter**:
 - TOC %
 - Ro %
 - Depth*1000 (ft)

 Shale formations:
 - Barnett
 - Marcellus
 - Fayetteville
 - Haynesville
 - Eagle Ford
 - Horn River
 - Woodford
 - Lower Goru
 - Sembar
 - Hangu
 - Chichali

© 2010 Weatherford. All rights reserved.
Pakistan can develop shale resources in a number of ways:

- Targeting existing source rock for shale gas
- Attempting to analyze samples of old wells for shale gas characters
- Re-entry of old wells and re-planning of current wells for shale core
- Integration of data and interpreting the best possible zones in country
Shale gas reserves are undergoing evaluation & feasibility studies. We expect first production from shale gas reserves towards late 2012.

Due to the more technological challenges & maturity considerations, wet shale gas is not being exploited in Pk.
Shale gas reserves are undergoing evaluation & feasibility studies. We expect first production from shale gas reserves towards late 2012.

Due to the more technological challenges & maturity considerations, wet shale gas is not being exploited in Pk.
Shale Development Technology

<table>
<thead>
<tr>
<th>Year</th>
<th>% OGIP Recovery Reported</th>
<th>Technology Applied</th>
<th>Shale in Development</th>
<th>Average Gas Price $/mscf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980’s</td>
<td>1%</td>
<td>Vertical wells, low rate gel fracs</td>
<td>Devonian</td>
<td>$1.98</td>
</tr>
<tr>
<td>1990’s</td>
<td>1.5% to 2%</td>
<td>Foam fracs 1st slick water in shale</td>
<td>Devonian</td>
<td>$1.91</td>
</tr>
<tr>
<td>2001</td>
<td>2 to 4%</td>
<td>High rate slick water fracs</td>
<td>Barnett</td>
<td>$4.25</td>
</tr>
<tr>
<td>2004</td>
<td>5 to 8%</td>
<td>Horizontal well dominant, 2 to 4 fracs</td>
<td>Barnett</td>
<td>$6.10</td>
</tr>
<tr>
<td>2006</td>
<td>8 to 12%</td>
<td>Horiz, 6 to 8 fracs, stimul fracs, water recycle trial</td>
<td>Barnett</td>
<td>$7.25</td>
</tr>
<tr>
<td>2008</td>
<td>12 to 30%</td>
<td>16+ fracs per well, Petro physics increases</td>
<td>Barnett</td>
<td>$9 & dropping</td>
</tr>
<tr>
<td>2010</td>
<td>30% to 40%</td>
<td>Technology to flatten decline curve, feeling pinch for frac water</td>
<td>Haynesville</td>
<td>$4.20</td>
</tr>
<tr>
<td>2011</td>
<td>45%+</td>
<td>Pad development drains 5,000 acres, salt water displacing fresh for fracs</td>
<td>Horn</td>
<td><$4.00 to <$3.00</td>
</tr>
<tr>
<td>Future</td>
<td>Project 45-55%</td>
<td>Green chemicals, salt water fracs, low disposal volume, reduced truck traffic, pad</td>
<td>Numerous</td>
<td>Depends on market</td>
</tr>
</tbody>
</table>

Multilateral Wells

- Dual
- Stacked
- Trilateral Fork
- Herringbone
- Backbone and Rib
- Radial

© 2010 Weatherford. All rights reserved.
Shale Development Technology

<table>
<thead>
<tr>
<th>Year</th>
<th>% OGIP Recovery Reported</th>
<th>Technology Applied</th>
<th>Shale in Development</th>
<th>Average Gas Price $/mscf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980’s</td>
<td>1%</td>
<td>Vertical wells, low rate gel fracs</td>
<td>Devonian</td>
<td>$1.98</td>
</tr>
<tr>
<td>1990’s</td>
<td>1.5% to 2%</td>
<td>Foam fracs 1st slick water in shale</td>
<td>Devonian</td>
<td>$1.91</td>
</tr>
<tr>
<td>2001</td>
<td>2 to 4%</td>
<td>High rate slick water fracs</td>
<td>Barnett</td>
<td>$4.25</td>
</tr>
<tr>
<td>2004</td>
<td>5 to 8%</td>
<td>Horizontal well dominant, 2 to 4 fracs</td>
<td>Barnett</td>
<td>$6.10</td>
</tr>
<tr>
<td>2006</td>
<td>8 to 12%</td>
<td>Horiz, 6 to 8 fracs, stimul fracs, water recycle trial</td>
<td>Barnett</td>
<td>$7.25</td>
</tr>
<tr>
<td>2008</td>
<td>12 to 30%</td>
<td>16+ fracs per well, Petro physics increases</td>
<td>Barnett</td>
<td>$9 & dropping</td>
</tr>
<tr>
<td>2010</td>
<td>30% to 40%</td>
<td>Technology to flatten decline curve, feeling pinch for frac water</td>
<td>Haynesville</td>
<td>$4.20</td>
</tr>
<tr>
<td>2011</td>
<td>45%+</td>
<td>Pad development drains 5,000 acres, salt water displacing fresh for frac</td>
<td>Horn</td>
<td><$4.00 to <$3.00</td>
</tr>
<tr>
<td>Future</td>
<td>Project 45-55%</td>
<td>Green chemicals, salt water fracs, low disposal volume, reduced truck traffic, pad</td>
<td>Numerous</td>
<td>Depends on market</td>
</tr>
</tbody>
</table>

Multilateral Wells

- **Dual**
- **Stacked**
- **Trilateral Fork**
- **Herringbone**
- **Backbone and Rib**
- **Radial**
Shale Summary of Upper and Lower Indus Basin

Lower Indus Basin
- Detailed reservoir studies have not been performed yet.
- Shale Beds are thick: over 80m.
- Relatively less heterogenous as compared to the Upper Indus.
- Water cut very high - Over 50%.

Upper Indus Basin
- Detailed reservoir studies have not been performed yet.
- Shale Beds are thickness vary greatly & ‘pinch out’ effect is common.
- Very heterogenous as compared to the Upper Indus.

LIB - Ideal place to start with the shale gas exploitation.

Vertical Multiple Stack Fracturing - A suitable candidate.
- Sufficiently thick beds in LIB.
- Cheaper & more feasible as per the reservoir geometry.
- Low expertise in horizontal well completions.
- Past horizontal well failures have intimated companies’ investment in horizontal completions.

Real Time evaluation of Shale Gas

Most Critical Problem of Shale Development in Pakistan - Lack of Data

Real time Evaluation can:
- Improve the pace of shale exploitation.
- Increase data base.
- Cut shot analysis time.
- Effectively point out the sweet spots.

Tools Available

Real Time Gas Chromatography - Evaluates organic content of the rock (gas composition). It determines hydrocarbon fluid types and contact points, identifies pay zones, detects sweet spots in shale and supports geosteering among other applications.

Rock-Wise - Evaluates inorganic components of the rock & can identify 55 elements.
Shale Summary of Upper and Lower Indus Basin

Lower Indus Basin -
- Detailed reservoir studies have not been performed yet
- Shale Beds are thick: over 80m
- Relatively less heterogenous as compared to the Upper Indus
- Water cut very high: Over 50%

Upper Indus Basin -
- Detailed reservoir studies have not been performed yet
- Shale Beds are thickness vary greatly & 'pinch out' effect is common
- Very heterogenous as compared to the Upper Indus

LIB - Ideal place to start with the shale gas exploitation

Vertical Multiple Stack Fracturing: A suitable candidate

Sufficiently thick beds in LIB
-Cheaper & more feasible as per the reservoir geometry
(Note: Detailed reservoir analysis has not yet been performed)
-Low expertise in horizontal well completions
Past horizontal well failures have intimated companies' investment in horizontal completions

Real Time evaluation of Shale Gas

Most Critical Problem of Shale Development in Pakistan - Lack of Data

Real time Evaluation can:
- Improve the pace of shale exploitation
- Increase data base
- Cut shot analysis time
- Effectively point out the sweet spots

Tools Available

Real Time Gas Chromatography - Evaluates organic content of the rock (gas composition). It determines hydrocarbon fluid types and contact points, identifies pay zones, detects sweet spots in shale and supports geosteering among other applications

Rock-Wise - Evaluates inorganic components of the rock & can identify 55 elements
Shale Summary of Upper and Lower Indus Basin

Lower Indus Basin
- Detailed reservoir studies have not been performed yet.
- Shale Beds are thick: over 80m.
- Relatively less heterogenous as compared to the Upper Indus.
- Water cut very high: Over 50%.

Upper Indus Basin
- Detailed reservoir studies have not been performed yet.
- Shale Beds greatly vary and pinch out is common.
- Very heterogenous as compared to the Upper Indus.

LIB- Ideal place to start with the shale gas exploitation
- Vertical Multiple Stack Fracturing: A suitable candidate.
- Sufficiently thick beds in LIB.
- Cheaper & more feasible as per reservoir geometry.
- Low expertise in horizontal well completions.

Past horizontal well failures have intimated companies’ investment in horizontal completions.

Real Time evaluation of Shale Gas

Most Critical Problem of Shale Development in Pakistan - Lack of Data

Real time Evaluation can:
- Improve the pace of shale exploitation.
- Increase data base.
- Cut shot analysis time.
- Effectively point out the sweet spots.

Tools Available

- **Real Time Gas Chromatography**: Evaluates organic content of the rock (gas composition). It determines hydrocarbon fluid types and contact points, identifies pay zones, detects sweet spots in shale and supports geosteering among other applications.

- **Rock-Wise**: Evaluates inorganic components of the rock & can identify 55 elements.
Cost Effective Business Model

- **Exploration Companies- Consortium**
 - Work Program for next 3-4 years
 - Drilling of vertical, horizontal & multilateral
 - Hydraulic fracturing/stimulation jobs

- **Service Providers- Consortium**
 - Bring relevant technology
 - Efficient execution of jobs
 - Cost effective solution

- **Human Resource Development---Serious Consideration**

Tight Gas Distribution in Pakistan

- Mostly the deep sand formations with very low permeability as low as 0.01 mD can be considered as tight gas sands
- They require frac simulations to enhance the permeability
- Tight gas formations are mainly present in southern and middle Indus basin. Not much work is going on in upper Indus basin
- Formations like Pab sandstone and lower Goru deep sands are expected to have potentially tight gas reservoirs
Cost Effective Business Model

- **Exploration Companies- Consortium**
 - Work Program for next 3-4 years
 - Drilling of vertical, horizontal & multilateral
 - Hydraulic fracturing/stimulation jobs

- **Service Providers- Consortium**
 - Bring relevant technology
 - Efficient execution of jobs
 - Cost effective solution

- **Human Resource Development---Serious Consideration**

Tight Gas Distribution in Pakistan

Mostly the deep sand formations with very low permeability as low as 0.01 mD can be considered as tight gas sands.

They require frac simulations to enhance the permeability.

Tight gas formations are mainly present in southern and middle Indus basin. Not much work is going on in upper Indus basin.

Formations like Pab sandstone and lower Goru deep sands are expected to have potentially tight gas reservoirs.
Tight Gas Reservoirs in Pakistan

- Any reservoir with permeability equal to or less than 0.01mD (Alam, 2011) is a tight reservoir.
- Sand members of lower Goru and Pab Formation in various regions of Lower Indus basin have been termed as tight gas reservoirs.

Sands of Lower Goru Formation
- Early Cretaceous and highly prolific silty sands
- The region has extensional deformation, followed by active compressional movement

Pab formation
- Late Cretaceous sands, restricted in some regions of lower Indus basin
- Good porosity and brittleness

Way forward to Tight gas Exploitation in Pakistan

- Core Analyses
- Well planning
- Right drilling technology
- Formation pressure test
- Reservoir modeling
- Frac technique
Tight Gas Reservoirs in Pakistan

- Any reservoir with permeability equal to or less than 0.01mD (Alam, 2011) is a tight reservoir.
- Sand members of lower Goru and Pab Formation in various regions of Lower Indus basin have been termed as tight gas reservoirs.

Sands of Lower Goru Formation
- Early Cretaceous and highly prolific silty sands
- The region has extensional deformation, followed by active compressional movement

Pab formation
- Late Cretaceous sands, restricted in some regions of lower Indus basin
- Good porosity and brittleness

Way forward to Tight gas Exploitation in Pakistan

- Core Analyses
- Well planning
- Right drilling technology
- Formation pressure test
- Reservoir modeling
- Frac technique
Economic Model for Tight & Shale Gas
(Brown Field)
- **GIIP:** 1 TCF
- **Recoverable Reserves:** 240 BCF
- **Number of wells:** 25
- **Failure:** 10%
- **Gas Flow Rate:** 5MMSCFD
- **Development Time:** 2 year
- **Well Capex $:** 478 Million
- **Facilities:** 50 Million
- **Opex:** 147 Million
- **Field Life:** 25 year
- **GAS Price:** $4.90/MMBTU
- **IROR:** 15%
- **Pay back:** 8.5 year

Economic Model for Tight & Shale Gas
(Green Field)
- **GIIP:** 1 TCF
- **Recoverable Reserves:** 240 BCF
- **Number of wells:** 25
- **Failure:** 10%
- **Gas Flow Rate:** 5MMSCFD
- **Development Time:** 5 year
- **Well Capex $:** 478 Million
- **Facilities:** 124 Million
- **Opex:** 147 Million
- **Field Life:** 25 year
- **GAS Price:** $6.21/MMBTU
- **IROR:** 15%
- **Pay back:** 6.5 years
Economic Model for Tight & Shale Gas
(Brown Field)

- **GIIP:** 1 TCF
- **Recoverable Reserves:** 240 BCF
- **Number of wells:** 25
- **Failure:** 10%
- **Gas Flow Rate:** 5MMSCFD
- **Development Time:** 2 year
- **Well Capex $:** 478 Million
- **Facilities:** 50 Million
- **Opex:** 147 Million
- **Field Life:** 25 year
- **GAS Price:** $4.90/MMBTU
- **IROR:** 15%
- **Pay back:** 8.5 year

Economic Model for Tight & Shale Gas
(Green Field)

- **GIIP:** 1 TCF
- **Recoverable Reserves:** 240 BCF
- **Number of wells:** 25
- **Failure:** 10%
- **Gas Flow Rate:** 5MMSCFD
- **Development Time:** 5 year
- **Well Capex $:** 478 Million
- **Facilities:** 124 Million
- **Opex:** 147 Million
- **Field Life:** 25 year
- **GAS Price:** $6.21/MMBTU
- **IROR:** 15%
- **Pay back:** 6.5 years
Coal Reserves in Pakistan

Total 187 billion tons of coal in the country in which Thar alone contains 175.5 billion tons of coal reserves

(Kelafant and Stern, 1998).
Coal Reserves in Pakistan

Total 187 billion tons of coal in the country in which Thar alone contains 175.5 billion tons of coal reserves

(Kelafant and Stern, 1998).
Satellite Map of Sindh

Character of Sindh Coal Fields

- **Resource (Bt)**
- **Moisture %**
- **Ash %**
- **Sulphur %**
- **LCV net %**

Thar = 1.75 Billion tons Est.
8 Blocks = 1.7 Billion tons
Satellite Map of Sindh

Character of Sindh Coal Fields

- **Resource (Bt)**
- **Moisture %**
- **Ash %**
- **Sulfur %**
- **LCV net %**

<table>
<thead>
<tr>
<th></th>
<th>Thar</th>
<th>Lakhra</th>
<th>Sonda</th>
<th>Jhimpir</th>
<th>Badin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thar</td>
<td>17</td>
<td>1.2</td>
<td>1.3</td>
<td>18</td>
<td>11.2</td>
</tr>
<tr>
<td>Lakhra</td>
<td>18</td>
<td>11.1</td>
<td>7.6</td>
<td>14.12</td>
<td>11.2</td>
</tr>
<tr>
<td>Sonda</td>
<td>34</td>
<td>15</td>
<td>22</td>
<td>18.71</td>
<td>11.4</td>
</tr>
<tr>
<td>Jhimpir</td>
<td>48</td>
<td>22</td>
<td>22</td>
<td>7.74</td>
<td>7.74</td>
</tr>
<tr>
<td>Badin</td>
<td>48</td>
<td>22</td>
<td>22</td>
<td>1.7</td>
<td>7.65</td>
</tr>
</tbody>
</table>

Thar = 1.75 Billion tons Est.
8 Blocks = 1.7 Billion tons
Thar Stratigraphy

- Coal seams present within the Bara member of Ranikot Formation belong to Paleocene age.
- Coal seams are underlain by thick sand dunes.
- Coal beds are divided into three seams.
- There are three aquifers, one above coal, one within coal and one below seam.
- The basement rock is very shallow and in some areas it is 300m deep.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Lithology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50'</td>
<td></td>
<td>Recent sediments clayey silt, brownish yellow in color, soft and friable.</td>
</tr>
<tr>
<td>100'</td>
<td></td>
<td>Sub-recent sediments Clayey sand of yellow to brown in color, well sorted and angular.</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>Bara Formation Greyish to black carbonaceous shale, its more undisturbed and sticky in touch. second thickest coal seam encountered i.e 25m</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>Thickest coal seam encountered i.e 50m</td>
</tr>
</tbody>
</table>

Commulative thickness of coal is 75m.

Coal Geometry in Bara Member

Fig. 3.3 Generalized cross-section of Thar (Jaleel et al., 1999). (Block-1, IV, II and III)
Thar Stratigraphy

- Coal seams present within the Bara member of Ranikot Formation belong to Paleocene age.
- Coal seams are underlain by thick sand dunes.
- Coal beds are divided into three seams.
- There are three aquifers, one above coal, one within coal and one below seam.
- The basement rock is very shallow and in some areas it is 300m deep.

Generalized Lithologic Log.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Lithology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50'</td>
<td>Recent sediments clayey silt, brownish yellow in color, soft and friable.</td>
<td></td>
</tr>
<tr>
<td>100'</td>
<td>Sub-recent sediments Clayey sand of yellow to brown in color, well sorted and angular.</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Bara Formation Greenish to black carbonaceous shale. Its more disintegrated and sticky in touch. second thickest coal seam encountered i.e 25m</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Thickest coal seam encountered i.e 50m</td>
<td></td>
</tr>
</tbody>
</table>

Cumulative thickness of coal is 75m.

Coal Geometry in Bara Member

Fig. 3.3 Generalized cross-section of Thar (Jalal et al. 1989).

(Block-1, IV, II and III)
Geochemical Analyses of Thar coal

Proximate Analyses

<table>
<thead>
<tr>
<th>Coal fields</th>
<th>Moisture %</th>
<th>Volatiles %</th>
<th>Coke %</th>
<th>Ash %</th>
<th>Fixed Carbon %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meiting Jhimpir</td>
<td>24.84%</td>
<td>27.92%</td>
<td>47.24%</td>
<td>13.32%</td>
<td>33.92%</td>
</tr>
<tr>
<td>Thar</td>
<td>47.82%</td>
<td>25.12%</td>
<td>27.06%</td>
<td>7.98%</td>
<td>19.08%</td>
</tr>
<tr>
<td>Lakhra</td>
<td>24.53%</td>
<td>26.89%</td>
<td>48.58%</td>
<td>21.00%</td>
<td>27.58%</td>
</tr>
</tbody>
</table>

Sulphur Analyses

<table>
<thead>
<tr>
<th>Coal Fields</th>
<th>Content in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakhra</td>
<td>5.21</td>
</tr>
<tr>
<td>Meiting Jhimpir</td>
<td>4.28</td>
</tr>
<tr>
<td>Thar</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Secondary Structures in Thar Coal, Reflecting Permeability

Natural fractures in coal: Cleats

Orthogonal orientation of face and butt cleats

Reticulate pattern of cleats

Source: Centre of Pure and Applied Geology, University of Sindh, Jamshoro
Geochemical Analyses of Thar coal

Proximate Analyses

<table>
<thead>
<tr>
<th>Coal fields</th>
<th>Moisture %</th>
<th>Volatiles %</th>
<th>Coke %</th>
<th>Ash %</th>
<th>Fixed Carbon %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meting Jhimpir</td>
<td>24.84%</td>
<td>27.92%</td>
<td>47.24%</td>
<td>13.32%</td>
<td>33.92%</td>
</tr>
<tr>
<td>Thar</td>
<td>47.82%</td>
<td>25.12%</td>
<td>27.06%</td>
<td>7.98%</td>
<td>19.08%</td>
</tr>
<tr>
<td>Lakhra</td>
<td>24.53%</td>
<td>26.89%</td>
<td>48.58%</td>
<td>21.00%</td>
<td>27.58%</td>
</tr>
</tbody>
</table>

Sulphur Analyses

<table>
<thead>
<tr>
<th>Coal Fields</th>
<th>Content in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakhra</td>
<td>5.21</td>
</tr>
<tr>
<td>Meting Jhimpir</td>
<td>4.28</td>
</tr>
<tr>
<td>Thar</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Secondary Structures in Thar Coal, Reflecting Permeability

Natural fractures in coal: Cleats

Orthogonal orientation of face and butt cleats

Reticulate pattern of cleats

Source: Centre of Pure and Applied Geology, University of Sindh, Jamshoro
Thar Analogue

Barmer coal, Cambay basin in India is the extension of Thar coal in Pakistan.

- Thar desert comprises different coal fields of Tertiary times
- Barmer coal field is present in the northern extension of Cambay basin. Lignite is present in Tharad Formation of Eocene age. It lies in the eastern part of Thar desert in the Rajasthan region, India.
- Thar coal is present in the Bara Formation of Paleocene age, in the eastern part of Thar desert.

<table>
<thead>
<tr>
<th>Thar Coal</th>
<th>Barmer Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary coals</td>
<td>Tertiary coals</td>
</tr>
<tr>
<td>Dominantly lignite</td>
<td>Dominantly lignite</td>
</tr>
<tr>
<td>VR = 0.33 – 0.41 %</td>
<td>VR = 0.33 – 0.38 %</td>
</tr>
<tr>
<td>Low overburden</td>
<td>Moderate to high overburden</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>in pipeline</td>
<td>87 – 95 bcm of CBM potential</td>
</tr>
<tr>
<td>Exploitation = Pre-evaluation stage</td>
<td>Exploitation = Dewatering stage</td>
</tr>
</tbody>
</table>

Favorable Controls for Thar as a CBM Reservoir

- Greater depths are better; however 150m is enough
- Good coal quality is better but lignite is being used as coal bed methane worldwide
- Low sulphur and low moisture
- Net seam thickness is good
Barmer coal, Cambay basin in India is the extension of Thar coal in Pakistan.

- Thar desert comprises different coal fields of Tertiary times
- Barmer coal field is present in the northern extension of Cambay basin.
 Lignite is present in Tharad Formation of Eocene age. It lies in the eastern part of Thar desert in the Rajasthan region, India.
- Thar coal is present in the Bara Formation of Paleocene age, in the eastern part of Thar desert.

<table>
<thead>
<tr>
<th>Thar Coal</th>
<th>Barmer Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary coals</td>
<td>Tertiary coals</td>
</tr>
<tr>
<td>Dominantly lignite</td>
<td>Dominantly lignite</td>
</tr>
<tr>
<td>VR = 0.33 – 0.41 %</td>
<td>VR = 0.33 – 0.38 %</td>
</tr>
<tr>
<td>Low overburden</td>
<td>Moderate to high overburden</td>
</tr>
<tr>
<td>87 – 95 bcm of CBM potential</td>
<td>87 – 95 bcm of CBM potential</td>
</tr>
<tr>
<td>Exploitation = Pre-evaluation stage</td>
<td>Exploitation = Dewatering stage</td>
</tr>
</tbody>
</table>

Favorable Controls for Thar as a CBM Reservoir

- Greater depths are better; however 150m is enough
- Good coal quality is better but lignite is being used as coal bed methane worldwide
- Low sulphur and low moisture
- Net seam thickness is good
Advance Technology Implementation - Potential Impact
(Indian Experience)

Air drilling is suitable for drilling in Thar’s lignite due to its intrinsic properties of being soft in nature and more susceptible to changes.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Increase ultimate recovery by 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal and in-seam drilling</td>
<td></td>
</tr>
<tr>
<td>Multistage drilling</td>
<td></td>
</tr>
<tr>
<td>Air drilling</td>
<td>Cut drilling time and cost by up to 50%</td>
</tr>
<tr>
<td>Optimizing stimulation</td>
<td>Increase ultimate recovery by 20-50%</td>
</tr>
<tr>
<td>Better well spacing</td>
<td>Could double NPV</td>
</tr>
<tr>
<td>Continuously variable pump control</td>
<td>Save workovers, boost ultimate recovery by 5-10%</td>
</tr>
<tr>
<td>Foam cement</td>
<td>Increase ultimate recovery by 5-10%</td>
</tr>
<tr>
<td>Coiled Tubing Frac</td>
<td>Increase ultimate recovery by 15-30%</td>
</tr>
<tr>
<td>Down hole gas compression</td>
<td>Increase ultimate recovery by 20-40%</td>
</tr>
<tr>
<td>Smaller rigs</td>
<td>Save $ 15,000 per location</td>
</tr>
<tr>
<td>Closed loop air drilling</td>
<td>Save $ 20,000-30,000/well</td>
</tr>
<tr>
<td>Casing drilling</td>
<td>Save $ 10,000/well</td>
</tr>
<tr>
<td>Jet slotting</td>
<td>Save $ 10,000/well, increase ultimate recovery by 20-50%</td>
</tr>
</tbody>
</table>

Value of Investment on the Prolific Thar

Why Thar?

- Large deposit can provide fuel for power generation 5000 MW at least
- High and constant lignite quality; one of the best lignites in the world
- Domestic fuel. Independence from imports
- Creation of 4000 direct jobs and 15,000 indirect jobs for phase I
- Generation of 1200 MW power generation at least for 50 years
- Competitive cost through other fuels like imported hard coal
- Fossil fuels will continue their dominance accounting for 65% of all the electricity generated in the world, with coal dominating at 44%
- Pakistan could meet the above mentioned world target having Thar as the largest lignite deposit. *Case Study Block II for power generation*
Air drilling is suitable for drilling in Thar’s lignite due to its intrinsic properties of being soft in nature and more susceptible to changes.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Increase ultimate recovery by up to 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal and in-seam drilling</td>
<td>Increase ultimate recovery by up to 50%</td>
</tr>
<tr>
<td>Multilateral drilling</td>
<td>Increase ultimate recovery by up to 50%</td>
</tr>
<tr>
<td>Air drilling</td>
<td>Cut drilling time and cost by up to 50%</td>
</tr>
<tr>
<td>Optimizing stimulation</td>
<td>Increase ultimate recovery by 20-50%</td>
</tr>
<tr>
<td>Better well spacing</td>
<td>Could double NPV</td>
</tr>
<tr>
<td>Continuously variable pump controller</td>
<td>Save workovers, boost ultimate recovery by 5-10%</td>
</tr>
<tr>
<td>Foam cement</td>
<td>Increase ultimate recovery by 5-10%</td>
</tr>
<tr>
<td>Coiled Tubing Frac</td>
<td>Increase ultimate recovery by 15-30%</td>
</tr>
<tr>
<td>Down hole gas compression</td>
<td>Increase ultimate recovery by 20-40%</td>
</tr>
<tr>
<td>Smaller rigs</td>
<td>Save $ 15,000 per location</td>
</tr>
<tr>
<td>Closed loop air drilling</td>
<td>Save $ 20,000-30,000/kw Well</td>
</tr>
<tr>
<td>Casing drilling</td>
<td>Save $ 10,000/kw Well</td>
</tr>
<tr>
<td>Jet slotting</td>
<td>Save $ 10,000/kw Well, increase ultimate recovery by 20-50%</td>
</tr>
</tbody>
</table>

Value of Investment on the Prolific Thar

Why Thar?

- Large deposit can provide fuel for power generation 5000 MW at least
- High and constant lignite quality; one of the best lignites in the world
- Domestic fuel. Independence from imports
- Creation of 4000 direct jobs and 15,000 indirect jobs for phase I
- Generation of 1200 MW power generation at least for 50 years
- Competitive cost through other fuels like imported hard coal
- Fossil fuels will continue their dominance accounting for 65% of all the electricity generated in the world, with coal dominating at 44%
- Pakistan could meet the above mentioned world target having Thar as the largest lignite deposit. *Case Study Block II for power generation*
Factors Considered While Deciding Over Technology for CBM

- Investment required
- Number of Seams encountered
- Reservoir pressure
- Reserves in various coal intervals
- Expected production
- Coal seam permeability & gas content
- Type of stimulation technique
- Well bore stability
- Artificial lift requirements, if any

2 Major Challenges of CBM Production PK

1. The coal is overlain by sub-recent deposits and then recent sand dunes. The drilling in sand dunes is technically difficult for there is a risk of sand collapsing. Hence advanced technologies are required for this purpose.

2. The coal is bounded above, below and within, with aquifers. For CBM exploration, it is necessary to dehydrate the formation in order to lower the pressure for release of methane gas. Hydrological expertise is required for the proper drainage, discharge and production of water.
Factors Considered While Deciding Over Technology for CBM

- Investment required
- Number of Seams encountered
- Reservoir pressure
- Reserves in various coal intervals
- Expected production
- Coal seam permeability & gas content
- Type of stimulation technique
- Well bore stability
- Artificial lift requirements, if any

2 Major Challenges of CBM Production PK

1. The coal is overlain by sub-recent deposits and then recent sand dunes. The drilling in sand dunes is technically difficult for there is a risk of sand collapsing. Hence advanced technologies are required for this purpose.

2. The coal is bounded above, below and within, with aquifers. For CBM exploration, it is necessary to dehydrate the formation in order to lower the pressure for release of methane gas. Hydrological expertise is required for the proper drainage, discharge and production of water.
Technology Selection for CBM Production in the Region - FLOW CHART

[Diagram showing Technology Selection Flowchart]

- **Proximate Analysis & Low depth**
 - (go for Canister gas analysis (Desorption analysis))

- **Permeability Testing**
 - Injection Fall off test

- **Vertical well with single sand completion**
 - Permeability

- **Net economic under current technology**
 - Medium, low, high (>) 30 ft

- **1st Seam - 125m (410ft)**
 - Vertical well with single sand completion

- **2nd Seam - 150m (492ft)**
 - Combined Thickness of all the 3 layers is 75m (bifurcated seams with varying thickness)

- **3rd Seam - 200m (656ft)**

- **THAR PAKISTAN**

- **Net economic under current technology**
 - Medium, low, high (>) 30 ft

- **Net sand thickness**
 - Very high (> 150 ft)

- **Gas content**
 - High

- **Depth**
 - Shallow, low (< 1,500 ft)

- **Permeability**
 - Medium, high (> 1,500 ft)

- **Coal embedded in sand layers**

- **Vertical distance between seams is approx 62 ft**

- **Vertical well with single sand completion, horizontal fracture stimulation**

- **1st Seam, 2nd Seam, 3rd Seam**

- **Combined Thickness of all the 3 layers is 75m (bifurcated seams with varying thickness)**

- **Very few (< 3 ft)**
Technology Selection for CBM Production in the Region - FLOW CHART

THAR PAKISTAN

Combined Thickness of all the 3 layers is 75m (bifurcated seams with varying thickness)

Very low (< 3 ft)

Proximate Analysis & low depth, (go for Canister gas analysis (De-adsorption analysis))

Permeability Testing- Injection Fall off test

Vertical well with lenticular seam completion

Very high (> 150 acf)

Permeability

Medium, low, high (> 30 ft)

Net economic under current technology

Low (< 140 Btu/ft³)

Not economic under current technology

Net economic under current technology

1st Seam- 125m (410ft)
2nd Seam- 150m (492ft)
3rd Seam- 200m (656ft)

Combined Thickness of all the 3 layers is 75m (bifurcated seams with varying thickness)

Very low (< 3 ft)

Proximate Analysis & low depth, (go for Canister gas analysis (De-adsorption analysis))

Permeability Testing- Injection Fall off test

Vertical well with lenticular seam completion

Very high (> 150 acf)

Permeability

Medium, low, high (> 30 ft)

Net economic under current technology

Low (< 140 Btu/ft³)

Not economic under current technology

Net economic under current technology

High, high, low

Low (10 mD)

Less overburden & shallow depth

High (1,000 psi)

High (1,000 psi)

Medium, high (> 1 mD)

Medium, high (> 1 mD)

Medium, high (> 1 mD)

Coal embedded in sand layers

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology

Net economic under current technology

High (10 mD)

Very deep (> 6,000 ft)

Vertical well with lenticular seam completion or canister completion with hydraulic fracturing stimulation

Very deep (> 40 ft)

No. of stacked stages

Medium, high, low

Low (< 140 Btu/ft³)

Net economic under current technology
Proppant Selection For Hydraulic Fracturing

Engineering Practices

<table>
<thead>
<tr>
<th>Engineering Practice</th>
<th>Key Reservoir Parameters</th>
<th>Cut off Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top set under ream</td>
<td>Depth of coal seam</td>
<td><1,800ft</td>
</tr>
<tr>
<td></td>
<td>Coal Seam thickness</td>
<td>>30ft</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>>100md</td>
</tr>
<tr>
<td>Open hole cavity</td>
<td>Compressive Strength of</td>
<td><1000psi</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>>10md</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>HVB-LvB</td>
</tr>
<tr>
<td></td>
<td>Rank of Coal</td>
<td></td>
</tr>
<tr>
<td>Horizontal well</td>
<td>Coal Seam thickness</td>
<td>3-20 ft</td>
</tr>
<tr>
<td></td>
<td>Extent of Coal</td>
<td>>15,000 ft</td>
</tr>
<tr>
<td></td>
<td>Dip of Coal Seam</td>
<td><15</td>
</tr>
<tr>
<td></td>
<td>Depth of Coal seam</td>
<td>500-4000ft</td>
</tr>
<tr>
<td>Cased hole completion</td>
<td>Number of Coal Seams</td>
<td>>2</td>
</tr>
<tr>
<td></td>
<td>with hydraulic fracture</td>
<td>>40 ft</td>
</tr>
<tr>
<td></td>
<td>stimulation (multi-stage)</td>
<td></td>
</tr>
<tr>
<td>Fracturing fluids</td>
<td>Permeability</td>
<td>>100md</td>
</tr>
<tr>
<td></td>
<td>Water saturation</td>
<td><5%</td>
</tr>
<tr>
<td></td>
<td>Reservoir Pressure</td>
<td><50%</td>
</tr>
</tbody>
</table>
Proppant Selection For Hydraulic Fracturing

Engineering Practices

<table>
<thead>
<tr>
<th>Engineering Practice</th>
<th>Key Reservoir Parameters</th>
<th>Cut off Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top set under ream</td>
<td>Depth of coal seam</td>
<td><1,800 ft</td>
</tr>
<tr>
<td></td>
<td>Coal Seam thickness</td>
<td>>30 ft</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>>100 md</td>
</tr>
<tr>
<td>Open hole cavity</td>
<td>Compressive Strength of</td>
<td><1000 psi</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>>10 md</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>HVB/LvB</td>
</tr>
<tr>
<td></td>
<td>Rank of Coal</td>
<td></td>
</tr>
<tr>
<td>Horizontal well</td>
<td>Coal Seam thickness</td>
<td>3-20 ft</td>
</tr>
<tr>
<td></td>
<td>Extent of Coal</td>
<td>>15,000 ft</td>
</tr>
<tr>
<td></td>
<td>Depth of Coal seam</td>
<td>< 15</td>
</tr>
<tr>
<td></td>
<td>Vertical Separation</td>
<td>500-4000 ft</td>
</tr>
<tr>
<td>Cased hole completion</td>
<td>Number of Coal Seams</td>
<td>>2</td>
</tr>
<tr>
<td>with hydraulic fracture stimulation (multi-stage)</td>
<td>Vertical Separation</td>
<td>>40 ft</td>
</tr>
<tr>
<td>Fracturing fluids</td>
<td>Permeability</td>
<td>>100 md</td>
</tr>
<tr>
<td>Water without proppant</td>
<td>Water saturation</td>
<td><5%</td>
</tr>
<tr>
<td>Gas with/without proppant</td>
<td>Water saturation</td>
<td><50%</td>
</tr>
<tr>
<td>Foam With Proppant</td>
<td>Reservoir Pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gralower dient</td>
<td></td>
</tr>
</tbody>
</table>
Gas Hydrates in Pakistan

ICE that burns!!

Figure 2. Global map of recovered and inferred gas hydrates, modified from Collett et al. (2009). The color coding refers to drilling programs highlighted in the gas hydrates research timeline shown in Figure 5. This map includes gas hydrates recovered from both shallower depths, which are generally not considered relevant for resource studies, and greater depths. For full discussion see Ruppel et al. (2011).
Gas Hydrates in Pakistan

ICE that burns!!

Figure 2. Global map of recovered and inferred gas hydrates, modified from Collett et al. (2009). The color coding reflects to drilling programs highlighted in the gas hydrates research timeline shown in Figure 5. This map includes gas hydrates recovered from both shallow depths, which are generally not considered relevant for resource studies, and greater depths. For full discussion see Ruppel et al. (2011).
Makran Coast in Pakistan

- Makran microplate is situated on the south western boundary of the Indo-Australian plate
- This is the coastal region of Baluchistan with a diverse geology
- A chain of approx. 18 mud volcanoes is distributed on the coastal belt both on- and offshore. There relief is around 250 feet above sea level. They are formed due to the subduction of Makran plate into Arabian plate.
- It has been expected that Makran offshore (continental slope and rise) and the mud volcanoes region might contain gas hydrates.

Mud Volcano Near Coastal Belt of Baluchistan

- Gas bubbles
Makran Coast in Pakistan

- Makran microplate is situated on the south western boundary of the Indo-Australian plate.
- This is the coastal region of Baluchistan with a diverse geology.
- A chain of approx. 18 mud volcanoes is distributed on the coastal belt both on- and offshore. There relief is around 250 feet above sea level. They are formed due to the subduction of Makran plate into Arabian plate.
- It has been expected that Makran offshore (continental slope and rise) and the mud volcanoes region might contain gas hydrates.

Mud Volcano Near Coastal Belt of Baluchistan
Possible Depositional Setting of Gas Hydrates

Figure 5: (a) Stability Thickness Map of GH in the Continental Margin (Kvenvolden & Barnard, 1982) and (b) Phase Curve for GH Stability (Sloan, 1998)

Seismic Identification of Gas Hydrates, BSR in Continental Margin off Pakistan

Possible Depositional Setting of Gas Hydrates

Figure 5: (a) Stability Thickness Map of GH in the Continental Margin (Kvenvolden & Barnard, 1992) and (b) Phase Curve for GH Stability (Sloan, 1998)

Seismic Identification of Gas Hydrates, BSR in Continental Margin off Pakistan

Favorable Controls for Gas Hydrates

- Convergent boundary – Makran subduction zone
- Low temperature and high pressures in past – Pleistocene glacial period
- Mud volcanoes along the coast – approx. 18 mud volcanoes are present near Makran coast. They are emitting gas continuously.
- Depth range in marine setting around 1000-1600m below sea surface with temperature conditions max. up to 20°C
Lateral Variation of Gas Hydrates and Free Gas

(Ojha, Sain and Minshull, 2010, Geophysics).

Favorable Controls for Gas Hydrates

- Convergent boundary – Makran subduction zone
- Low temperature and high pressures in past – Pleistocene glacial period
- Mud volcanoes along the coast – approx. 18 mud volcanoes are present near Makran coast. They are emitting gas continuously.
- Depth range in marine setting around 1000-1600m below sea surface with temperature conditions max. up to 20 C
Methane Hydrates Production Techniques

De-Pressurization Hydrate Production

Thermal-Injection cycle Gas Hydrate production

Hydrate Drilling Challenges That Might Be Faced in Offshore Pakistan
Methane Hydrates Production Techniques

De-Pressurization Hydrate Production

Thermal-Injection cycle Gas Hydrate production

Hydrate Drilling Challenges That Might Be Faced in Offshore Pakistan
Challenges Associated with Hole Enlargement

More Challenges…
Challenges Associated with Hole Enlargement

More Challenges...
SUMMARY

- Enough unconventional reservoirs exist in the country
- Unconventional reservoirs are required to be evaluated by collection of more data by initiating pilot projects in shale gas as early as possible
- Exploration blocks may be awarded for unconventional reservoirs
SUMMARY

- Enough unconventional reservoirs exist in the country
- Unconventional reservoirs are required to be evaluated by collection of more data by initiating pilot projects in shale gas as early as possible
- Exploration blocks may be awarded for unconventional reservoirs
Thank you

Queries can be made directly to authors

For geological aspects, geochemical analyses and mapping, direct questions to:

Syeda Areeba Ayaz (Author: Unconventional Plays of Pakistan)
Syeda.ayaz@uqconnect.edu.au

For technological perspective, direct questions to:

Batool Arhamna (Author: Technological Solutions to Unlock Unconventional Potential of Pakistan)
Batool.haider@me.weatherford.com