Fracture Characterization and Analog Modeling of the Woodford Shale in the Arbuckle Mountains, Oklahoma, USA*

Henry Badra¹

Search and Discovery Article #80207 (2012)
Posted February 6, 2012

*Adapted from oral presentation at AAPG International Conference and Exhibition, Milan, Italy, October 23-26, 2011

¹University of Oklahoma, Norman, OK (hbadra@ou.edu).

Abstract

Understanding the mechanisms under which shales deform is fundamental to improving exploration success in unconventional resource plays. An outcrop of the Woodford Shale has been chosen to characterize fracture patterns at the outcrop level, and relate them to the structural regime of the study area and internal stratigraphy of the formation. The outcrop is located along a syncline in the Arbuckle Mountains of Oklahoma (Sec 34, T. 1 S., R. 2 E.) between Vines Dome and Dougherty Anticline. Gamma ray logs of the outcrop were obtained, the section was measured, samples were collected, and fracture orientations along various points were recorded. A unique fracture pattern was mapped, where fracture orientations are different at the various points along the structure. Also, natural fractures are abundant and perpendicular to bedding in brittle cherty layers, and scarce and slanted in ductile, thin-bedded mudstones. The recognition of these patterns is in agreement with measurements obtained in the laboratory of the mechanical properties of the Woodford Shale. Alternating sequences of laminated mudstones are rich in organic content. They are also mechanically ductile. Interbedded cherty layers are less organic-rich, and mechanically brittle. Therefore, the Woodford Shale can be defined as an axially anisotropic material in the direction perpendicular to the laminations and an isotropic material in the direction parallel to the laminations. An analog model constructed in the laboratory is used to examine the regional relationship between folds and the development of natural fractures in a brittle-ductile material. Another analog model examines small-scale deformation in materials with varying mechanical properties. The hypotheses for these experiments based on field observations are: 1) laminations in shale formations are an important control in the propagation of natural fractures along with bed thickness and mineralogy, and 2) fracture patterns in shales are predictable along folds assuming the stress field is understood. A 3D computer model is constructed with the data from the analog models, to refine a conceptual model that can be applied to predicting fracture patterns in brittle-ductile materials and other shale formations.
References

Websites

Fracture characterization and analog modeling of the Woodford Shale in the Arbuckle Mountains, Oklahoma, USA

Henry Badra
ACKNOWLEDGEMENTS

For all their hard work, equipment, and/or contributions: Dr. Neil Suneson, Dr. Ze’ev Reches, Mr. Bob Allen, Dr. Stanley Paxton, and many more

This work has been entirely possible thanks to my academic advisor Dr. Roger Slatt
OUTLINE

- Why are fractures in unconventional shales important?
- Geologic setting of the Woodford Shale and Arbuckle Mountains
- Problems with fractures in the Woodford Shale
- Methodology of study
- Results
- Conclusions and applications to unconventional shales
- QUESTIONS
Fractures in unconventional shales are important:
- Increase porosity (if open)
- Increase permeability (if connected)
- Horizontal well placement
- Hydraulic fracture stimulation
- Microseismic monitoring
- 3D seismic interpretation
INTRODUCTION

- Mechanical layers control fracture nucleation and propagation
- Layers create mechanical anisotropy

GEOLOGIC SETTING

Woodford Shale

- Marine deposition (392-359 mya) along continental failed rift known as Southern Oklahoma Aulocogen (Type II & III kerogen)

- Major transgression, low oxygen conditions and high productivity led to organic preservation (~7% TOC)

- Woodford Shale exposed in Arbuckle Mountains of Oklahoma along folds, as result of Late Pennsylvanian uplift

Modified from Ham (1969) and Cardott (2005)
GEOLOGIC SETTING

Late Devonian - Early Mississippian

~359 ma

Modified from Suneson (1997) and Blakey (http://www2.nau.edu/rcb7/namM345.jpg)
GEOLOGIC SETTING

Outcrop Locations
1. I-35 road cut
2. Vines Dome
3. Lazy S Ranch

Modified from Ham 1969, Suneson 1997 & OWRB 2006
PROBLEMS

• What is the nature of fractures in the Woodford Shale?
• What is the role of lithofacies in natural fractures?
• How do natural fractures interact with mechanical boundaries?
• How to recognize horizontal drilling ‘sweet spots’ and improve stimulation techniques?
Methods

- **Field**
 - Outcrop gamma ray logging
 - Rock types (lithofacies descriptions)
 - Fracture mapping and orientations

- **Lab**
 - Analog clay modeling
RESULTS

Lithofacies of the Woodford Shale outcrops
RESULTS

Fracture types of the Woodford Shale
RESULTS

I-35 road cut ~ 500 ft (155 m) of exposed Woodford Shale

6 ft (2m)
RESULTS

2 dominant fracture sets present
• N-S/E-W conjugate set
• NW-SE set
RESULTS

Vines Dome outcrop, approximately 240 feet (75 meters) of tilted Woodford Shale.
RESULTS

- ‘Hot’ gamma ray intervals contain more uranium
- High uranium indicative of chemically reducing depositional environment
- Total of 75m of exposed Woodford Shale
- Frequency of lithbound fractures decreases with higher gamma ray
Results

Krystyniak (2005)

Subsurface data from Paxton (2006)
RESULTS

2 dominant fracture sets present
• N-S set
• NW-SE/NE-SW conjugate set
RESULTS

Analog modeling apparatus
RESULTS

![Diagram showing a setup with a latex sheet, clay, Play-Doh, and an aluminum block between two plexiglass walls. There is a measurement of 5 cm on the model.](image)
RESULTS

5 cm
CONCLUSIONS and APPLICATIONS

1. Spectral gamma ray profile shows good correlation of U to total gamma ray.

2. Dominant N-S/E-W conjugate set likely formed in early deformation during burial and increased pore pressure (tensile fracturing).

3. NW-SE/NE-SW conjugate set formed at later stage due to cross-cutting relationship and alignment with major structures in the Arbuckle Mountains.

4. Low gamma ray and low uranium indicative of more brittle lithofacies, better drilling targets for horizontal wells, leads to faster drilling and better steering.

5. High gamma ray and high uranium indicative of more ductile lithofacies; intervals can act as hydraulic fracture barriers or baffles; highly fissile intervals can create borehole stability problems.

6. Mechanical boundaries in the Woodford Shale are very weak planes, can be easier to stimulate with hydraulic fractures.
Questions
Selected Bibliography

