Unconventional Gas in Italy: the Ribolla Basin*

Roberto Bencini¹, Elio Bianchi², Roberto De Mattia², Alberto Martinuzzi², Simone Rodorigo², and Giuseppe Vico²

Search and Discovery Article #80203 (2012) Posted January 9, 2012

Abstract

CBM and Shale Gas production is growing fast and is becoming an important energy source in many countries.

CBM is methane produced directly from coal seams. Methane is found adsorbed into the coal matrix and it is produced at low pressure by pumping away any water from the coal seam and stimulating the methane flow through the coal cleats to the well bore. Similarly, Shale Gas is natural gas that is produced by desorption from organic rich clay at low pressure, after multistage stimulation of long horizontal boreholes, often from formations that are less permeable than coal.

Independent Resources plc is developing the first unconventional gas project in Italy, at the 100% owned "Fiume Bruna" and "Casoni" exploration licences (Central Italy), where some 300 BCF of natural gas are calculated to be in place, of which 160 BCF are interpreted to be primarily recoverable from the two blocks. The gas is interpreted to be producible from both the coal and the organic rich shale that is associated with the coal seam, at an average depth of approximately 1000 m.

Results to date include knowledge that the Miocene age organic rich sequence:

- consists of one laterally continuous 9-11 meter thick seam of coal and black shale,
- is saturated with thermogenic gas,
- is dry,
- is able to produce excellent quality natural gas by desorption after stimulation,
- has a permeability of 1-2 mD,
- responds more like a gas shale than a classic high permeability coal.

^{*}Adapted from oral presentation at AAPG International Convention and Exhibition, Milan, Italy, October 23-26, 2011

¹Independent Resources plc, Rome, Italy (rbencini@ir-plc.com)

²Independent Resources plc, Rome, Italy

Additionally, there are indications that the 70 meter thick laminated marl and clay sequence immediately above the main seam may be prospective for shale gas as well.

The initial challenges of the project are:

- characterization of the coal and of the organic rich shale, including its mineralogy and gas content, gas composition and gas productivity, and any associated water;
- identification of the best formation stimulation technique;
- technology transfer from areas where CBM and Shale Gas production is mastered with economic success;
- procurement of suitable equipment and services in a safe and value-for-money manner.

ECBM (Enhanced Coal Bed Methane) is one way to implement CO₂ geological storage, by injecting CO₂ in unmineable coal seams to enhance methane recovery. This technique may find application toward the end of the primary production cycle in the Ribolla Basin.

Selected Reference

Mukhopadhyay, P.K., J.A. Wade, and M.A. Williamson, 1994, Measured versus predicted virtinite reflectance from Scotian Basin wells *in* P.K. Mukhopadhyay, and W.G. Dow, (eds.), Vitrinite reflectance as a maturity parameter; applications and limitations: ACS Symposium Series, v. 570, p. 230-248.

RIBOLLA, 2010

Unconventional Gas in Italy: the Ribolla Basin

R. Bencini rbencini @ir-plc.com

E. Bianchi, R. De Mattia, M. Martinuzzi, S. Rodorigo, G. Vico www.ir-plc.com

AAPG International Conference & Exhibition

Milano Convention Centre, Milan, Italy, 23-26 October 2011

RIBOLLA BASIN LOCATION

The Ribolla Basin is covered by two Exploration Licences:

- •"Fiume Bruna"
- •"Casoni"

100% IR plc

RIBOLLA COAL MINING

N.N.E. Monte Massi.

S.S.O.

- s. Breccia serpentinosa
- d. ? Alberese.

Miocene.

- Scisto argilloso e carbone.
 Calcare a Mitylus e carbone.
 Conglomerati miocenici e carbone.

NET "COAL" THICKNESS

DEPOSITIONAL MODEL

GAS INTERVALS

TOC AND MINERALOGY

FIUME BRUNA 2 - Mineralogy of "Argille Lignitifere" Formation

COAL WIRELINE CORING

SATURATED COAL BUBBLING GAS

MEASURING COAL GAS CONTENT

COAL GAS CONTENT

Coal and Gas Shale at Ribolla are gas saturated

Fiume Bruna Can. 13 338.90-339.20 m

Sample Cell Equilibrium Pressure (PSIA)

SEISMIC ACQUISITION

2008-2010 SEISMIC SURVEYS **

RIBOLLA SEISMIC SECTION

2010 COAL STIMULATION

2010 COAL STIMULATION

GAS COMPOSITION

GOOD NEWS:

Methane 93-94%

Ethane 1-2%

Nitrogen 4%

CO₂ 1%

SPECIAL GOOD NEWS:

the gas is of thermogenic origin (Delta ¹³C_{methane} -28 permil)

Considering that the section has <u>not been uplifted</u>, this means that the coal /gas shale seam produced <u>many times</u> the gas it is able to trap by absorption in the matrix, and that the seam is <u>always saturated</u> with gas.

STRUCTURE AND GRAVITY MAP

SCHEMATIC CROSS-SECTION

VITRINITE REFLECTANCE MAP

Notes:

FB-2 well sapropelic, lacustrine coaly sequence:

- suppressed maturity indicator (V_o=0.46%);
- exceptionally high content of Liptinite (12-22%);
- high geothermal gradient (twice the normal);
- young age of rocks (Late Miocene, 6 MY) .

Modelled vitrinite reflectance is based on FB-2 values, extrapolated on the basis of Horseshoe Canyon / Drumheller coal maturity vs depth in the Alberta Basin, and corrected for suppression $(V_{o\ corr} = V_o + 0.6\%,\ after\ P.\ Mukhopadhyay,\ 1994)$.

STRUCTURAL FORM-LINE MAP 🐺

thermogenic methane

prospective area

RESULTS TO DATE

- Single play: coal and gas shale (tens of metres thick)
- Coal and Gas Shale have similar gas content of 4.7 m³/t (152 scf/ton) at approx. 80 bar
- Dry organic rock with 1-2 mD permeability, gas saturated
- Water-based frac tried. Next: nitrogen frac
- Seam responds overall more like Gas Shale than classic high permeability CBM coal
- More than 190 km² (47,000 acres) of potentially productive area with seam at an average depth of 1000 m (3280 ft)
- Estimated 27.4 BCM (968 BCF) of gas in place
- Estimated 5.7 BCM (203 BCF) of recoverable gas 69% Shale Gas and 31% CBM/CSM

Source: National Energy Board, Canada

WORK PROGRAMME

- Test future wells dry Shale Gas style
- Obtain "Exploitation Concession"
- Produce material amount of methane
- Test CO₂ injection and methane recovery
- Inject CO₂ at full rate and recover methane
- Abandon site safely and responsibly

thank you for attention