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Abstract

Fractured basement reservoirs in Central Sumatera Basin would be a future Indonesian oil and gas development. An analog outcrop model
needs to be conducted as a first step toward predicting subsurface fracture system attributes. The Kotopanjang Area was chosen for this
study because of good quality outcrops of pre-Tertiary basement of the Central Sumatera Basin. The Central Sumatra Basin is one of the
most hydrocarbon prolific Indonesian Tertiary back-arc basins today. It was formed as a pull-apart basin related to NW-SE trending dextral
strike-slip faulting. It experienced three tectonic deformation phases: Mesozoic compressional, Eocene-Oligocene extensional, and Pliocene-
Pleistocene compressional tectonics. The objective of this study was to conduct fracture characterization on basement outcrops and to obtain
empirical and functional relationships between the fracture attributes.

The methods used in this study included geological field mapping and scanline sampling, data sorting, data calculation, statistical analysis,
and interpretation. Scanline sampling was conducted on pebbly mudstone (Carbon-Early Permian). Data calculation results were plotted in
graphical form, analyzed statistically, and interpreted geologically. The results would be useful in predicting: (i) fracture zone width, (ii)
geometry of fracture zone, and (iii) fracture porosity and permeability.

The study area is dominated by NW-SE and NE-SW trending basement structures. The fractures observed in study area include fault-related
fracture systems. Two damage zones can be observed in scanline sampling: Damage Zone #1 and Damage Zone #2. Damage Zone #1 shows
that the fractures are related to dextral strike-slip faulting. Damage Zone #2 shows that the fractures are related to normal faulting. Both of
damage zones indicate several high strain zones with average intensity of three to five fractures per meter. Rose diagrams illustrated three
main fracture orientations: NE-SW, NNE-SSW, and WNW-ESE trending fractures. The NE-SW trend consists of two average strike
orientations N 215° E and N 235° E represented by conjugate fractures systems. The NNE-SSW trend with an average strike of N 185° E is
represented by joints and veins. Veins trend WNW-ESE. We summarize that the main stress controlling all the fractures was in the NNE-
SSW direction. Fracture spacing, length, and thickness cumulative distribution plots demonstrated that all fractures follow Power-Law
distribution with fractal dimension (D) 1.0 to 2.
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The study area is dominated by NW-SE and NE-SW trending basement structures. The fractures observed 4 o gy P . : . : TR TR R e
In study area include fault-related fracture system. Two damage zones can be observed in scanline sampling: oy s ' ' | ' | S,
Damage Zone#1 and Damage Zone#2. Damage Zone#1 shows that the fractures are related to dextral strike-
slip fault. Damage Zone#2 shows that the fractures are related to normal fault. Both of damage zones indicate
several high strain zones with average intensity 3 to 5 fractures per meter. Rose diagram demonstrated three
main fractures orientation: NE-SW, NNE-SSW, and WNW-ESE trending fractures. NE-SW trend consists of
two average strike orientations N 215 °E and N 235 °E represented by conjugate fractures system. NNE-

SSW trend with average strike N 185 °E is represented by joints and veins. WNW-ESE trend is represented

Dy veins. It can be summarized that main stress controlling all the fractures is NNE-SSW direction. Fracture Figure-1. Map showing the location of geological mapping in Kotopanjang area, Kampar Regency, Riau, Central Sumatera, Indonesia. Research area lies at mountain front of Barisan Hill,
spacing, length, and thickness cumulative distribution plot demonstrated that all of fractures follows Power- western part of Central Sumatera Basin. The southern part of the research area is Kampar Lake. Kampar Lake at several years ago was Kampar Kanan River, but today it is dammed for power
Law distribution with fractal dimension (D) 1.0 to 2 generation. The research area is located about 85 km from Minas giant field area to southwest. The fracture characterization study was conducted in southeastern geological mapping area.

Panorama View Kampar Lake, Kolopanjang

Natuna Sea INTRODUCTION

The pre-Tertiary basement rocks floored the Tertiary sediments in the Central Sumatra Basins. The Central Sumatra Basin
is one of the most hydrocarbon prolific Indonesian Tertiary back-arc basins today. Tertiary play remains primary target
proven and produced in the Central Sumatra Basin, while the pre-Tertiary fractured basement play is still secondary target
and need to be explored further. Eocene-Oligocene graben Pematang rich in hydrocarbons lied directly on pre-Tertiary
basement rock is source rock for petroleum system in Central Sumatra Basin. Understanding to fault / fracture systems
and flow behavior of pre-Tertiary basement rock will make possible to generate prospect of fractured basement reservoirs
in Central Sumatra. The objective of this study was to conduct fractures characterization on basement outcrops and to
obtain empirical and functional relationships between the fracture attibutes. The result need to bridge the relationship
between seismic and well data so that fractured basement reservoirs model generated in sulbsurface will be validated.
Research area location map and panorama view is presented on Figure-1 and Figure-2.
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—— . Central Sumatera Basin (CSB). The Central  faulted, and folded into large structural blocks or belts of metamorphic rock and intruded by granite batholiths.
' Sumatra basin is bound to the southwest  The second significant tectonic event probably occured in the Late Cretaceous and early Tertiary time, when the
by Barisan Mountain’s geanticlinal uplift and ~ major tensional structures that include grabens and fault blocks were formed in the basins of Sumatra.
volcanic arc, to the north by the Asahan arch,

to the southwest by the Tigapuluh highandto  Figure-4 presented tectonic development of the Central Sumatra Basin showing four major sequence of
the east by the Sunda Craton. Structuring in - deformation (FO, F1, F2, F3) (Heidrick and Aulia, 1996). FO deformation is related to basement structures in
the Central Sumatra Basin is related to the first  which faults and fold-fault zones belonging to this family of structures are old having formed in Late Triassic-
order NW -SE trending right lateral strike-slip  Early Jurassic time (Pulunggono and Cameron, 1984). FO is classified as pre-rift structures in report based on
fault (The Sumatra Fault System), in response  tectonostratigraphic division. F1 deformation is dominated by extension along NS trending structures forming
to an oblique northward low angle subduction  ES rifting. The sedimentary unit related to this event is classified as syn-rift deposit. F2 deformation is related
of the Indian Ocean Plate beneath the Asian  to dextral strike-slip faulting particularly along N-S trending fractures system. The youngest deformation event,
Plate which gave rise to a traspressional stress ~ F3, is a compression causing inversion on previous structures particularly N-NW trending dextral strike-slip fault
system. system. F3 deformation is directly linked to the development of Sumatran transform margin commencing at 13-

15 Ma.
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features presentin the Central SumateraBasin -~ Figure 5. Stratigraphic nomenclatures of the Central Sumatera Basin (Heidrick and Aulia, 1996). It shows
are the result of orogenic activity that occurred  syndepositional formations, respective episodes of deformation and brief lithologic descriptions of cotectonic
p in at least three separate episodes, the mid-  formations. The Paleogene of Pematang sediments are syn-orogenic in character having been deposited in
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Figure-4. Tectonic development of the Central Sumatra Basin orogeny. The earliest of major episodes was  of the Neogene is represented by the Sihapas group and overlying diachronous Telisa Formation. Top Neogene
Figure-5. Stratigraphic nomenclatures of the Central Sumatera Basin showing four major sequence of deformation (FO, F1, F2, F3) (Heidrick the mid- Mesozoic orogeny whenthe Paleozoic  is characterized by pronounced erosional unconformity overlain by a thin layer of Holocene alluvial sandstone
(Heidrick and Aulia, 1996). and Aulia, 1996) and Mesozoic strata were metamorphosed,  and gravel as a result of basin uplift during Pliocene time.
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METHODS OF STUDY FIELD GEOLOGICAL MAPPING SURVEY

Field Geological Mapping Survey Field geological mapping area was conducted covering 83.4 km2 (11.5 km x 7.25 km) in Kotopanjang area . The objective of geological mapping is to map the basement rock and conduct fracture characterization on basement outcrop.
ooty Aot oy Geological map, cross section, and stratigraphy can be observed in Figure-7. Based on the result, structural setting model of research area is a half-graben. The pre-rift is pebbly mudstone unit (Carbon-Early Permian), schist-quartzite unit

* Siriko-Chi rsCLERmanr
« Goeologeol cros-seciion modal conasic kon

iy b e Yo Wi bty ivind e kg (Carbon-Early Permian), and granite intrusion unit (Middle Permian-Early Jurassic) as pre-Tertiary basement. The syn-rift deposition is filled by Pematang Formation (Eocene-Late Oligocene) consisting sandstone and siltstone unit. Sihapas

wirvay

e Een Formation, Telisa Formation, and Petani Formation can not be observed in the reserac area. It can be caused by two probabilities, no deposition or eroded. Alluvial deposit Holocene covered area of Silam River. Structural elements that can

7] Encone-Osgocone Sthicne Uni

3 focens-cagocens soncntona be observed in the research area consisted of faulting, folding, and fractures. Faulting is represented by NE-SW dextral strike-slip fault, NW-SE sinistral strike-slip fault, and NNE-SSW normal fault. It can be interpreted that the main stress
S controlling structural elements in the research are is NNE-SSW. Based on geological map result, fracture characterization was conducted on pebbly mudstone of Bohorok Formation in Southeastern of research area (see Figure-7). The
fracture study area is located in paleohigh basement, part of flexural margin. It covered Beranakan dextral strike-slip fault and Angsa Normal Fault.

Crigd Jochon & - B

Scanline sampling is conducted on
Pebbly Mudstone, Bohorok Formation
SCAN LINE SAM PLING ,Carbon-Early Permian. Figure-8
shows pebbly mudstone outcrop
photos and thin section. Figure-9
shows scanline sampling map where
fracture study is conducted. Total
length of the scanline measurements
for the fracture characterization on
pebbly mudstone outcrops amounted
to £+ 208 m. The total number of
fractures which can be observed by
scanline during this study amounted to
719 fractures. There are 22 numbers
of scanline successfully conducted
during the study. Based on fracture
distribution  proximity main faults,
it can be divided into two damage
zones, Damage Zone#1 and Damage
Zone#2. Damage Zonet#1 isassociated
with Beranakan Dextral Strike-Slip
Fault, whereas Damage Zone#2 is
Figure-8 N : s [isl 155 : s (I associated with Angsa Normal Fault.

Geological Map, Kofopanjang Area
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