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Abstract

Recent flume and field studies show that sediment may be stored by fluvial aggradation and lateral migration during regression, resulting in
sediment starvation in coeval marine environments. In extreme cases, this may result in storage of all sediment within the fluvial system and
complete starvation, or “autodetachment,” of the contemporary marine shoreline. Complete sediment starvation of the shore is still
theoretical, and likely rare. Several recent field studies, coupled with new ideas regarding the scour processes of sequence boundaries,
however, suggest that significant falling and lowstand fluvial sand storage commonly results in diminished to near total reduction of marine
reservoir sand.

Newer views on scour of the “subaerial unconformity” sequence boundary show that it does not actually record a surface of exposure and
near-complete bypass of sediment at lowstand as originally presumed, but rather records a composite surface formed by lateral migration and
incision of rivers that ‘carve-and-cover’ the subaerial unconformity throughout regression. This carve-and-cover process means that fluvial
sediment is deposited above this surface throughout the regressive phase. Because transport of sand lags transport of suspended load,
regressive fluvial sediments disproportionally sequester the sandy fraction. Coastal Quaternary systems and the Cretaceous of the Western
Interior provide several examples where coastal systems were deprived of sandy sediment to varying degrees during regression. Sand
starvation ranges from minimal, resulting in prominent regressive coastal sand reservoirs, to near-complete, in which case lowstand terminal
estuaries with negligible coastal sand deposition result. Partial to near-complete "sand autodetachment”, in which there is sand starvation of
marine reservoirs, appears more pronounced where regressive slopes are low, compared to river profiles and where base-level remains
relatively stable during regression. Such minimally incised systems are common where stable base-level promotes lateral migration of
channels during falling and lowstand stage, enhancing fluvial sand storage.
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Terminal Estuaries in the K Clearwater Fm, Canada
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