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Abstract

Although the importance of sediment supply is widely accepted, most studies of the ancient must assume constant supply because it is
difficult to quantify or model. Because changes in sediment supply or tectonics can result in similar architectures, it is not possible to know
the exact stratigraphic response to specific tectonic processes without assessing drivers independently. We present a comprehensive analysis
of two contrasting stratigraphic architectures within a Campanian low-aspect-ratio (LAR) clastic wedge in the Cordilleran Foreland basin
(CFB) that 1) quantifies sediment supply for onlapping and offlapping sequence sets within the LAR wedge, 2) tests limits of diffusion-
based, forward stratigraphic modeling (Dionisos) to calculate supply and 3) uses growth-strata correlation to disentangle structural drivers.
Previous correlations of Aschoff and Steel (2011) were extended using a database of 78 well-logs and 30 stratigraphic profiles. The new
correlation and isopachs provide the 3D perspective needed to quantify supply and highlight affects of Laramide uplifts, using growth-strata
and thinning. Stratal volumes were calculated for offlapping and onlapping parts of the LAR wedge, using the regional sequence-
stratigraphic framework and isopach maps covering ~600,000 km?” of the CFB; stratal volumes were decompacted and converted to sediment
flux, using biostratigraphic age-control. Volume calculations yielded sediment fluxes of 63,049 km*My-1 for the offlapping and 65,859
km*My-1 for the onlapping sequence set. Forward stratigraphic modeling, using numerous known input variables, yielded sediment fluxes of
27,217 km*My-1 for offlapping and 27,308 km’My-1 for onlapping sequence set. Both methods yielded similar sediment fluxes, indicating
little variation in supply despite contrasting stratal architecture. Uplift of the Uinta Mountains was constrained to upper Campanian, based on
new isopach maps showing an east-west-trending depozone along the southern Uinta Mountains and correlation of growth-strata to basin-
fill. Backstripping by Liu et al. (2011) suggest that dynamic subsidence migrated far eastward, away from the main depozone of the LAR
wedge during the Sevier-Laramide transition. Migration of dynamic subsidence may have catalyzed the 3rd-order LAR wedge, but higher
frequency architectural changes within the wedge were likely due to local Laramide structures, such as the San Rafael Swell (SRS) and the
Uinta Uplift, not sediment supply.
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Current Problems- Sediment Supply

Numerical and Physical Models
= Difficult to up-scale to ancient sedimentary systems and basins
= Assumptions about sea-level, tectonics, stratal preservation, etc.

Quantifying in the Ancient
= Requires detailed, basin-wide correlation
= Must encompass entire “container” of sediment
= Requires good age control
= Assumptions with decompaction

Best Approach- Integration



Objectives and Approach

Evaluate Role of Tectonics
(see Aschoff and Steel, 2011 GSAB; Valora and Aschoff, 2012 UGS Report)

= Growth-strata analysis- local thrust-belt structures
= Regional Correlation with Sequence Stratigraphy and
Biostratigraphic Control

Quantify Sediment Flux for End-member Strat Geometries
= Construct regional outcrop-subsurface connection for 4D view of
basin-fill
= Calculate stratal volumes for select 4t and 5t order depositional
sequences
= Convert to sediment volumes using decompaction

Forward Stratigraphic Model of End-member Strat Geometries
= Dionisos- diffusion-based forward stratigraphic model

= Input well known basin geometry, subsidence, sea-level curve, time-
lines and stratigraphy

= Test the limit of Dionisos by modeling contrasting 4t"-order
sequences as well as 5t"-order stratigraphic sequences



NA Cordilleran

Foreland Basin
Western USA

Best-studied Foreland Basin
o High-resolution Ammonite Zones
o Radiometric Dates

o Bentonites/ashes

o Extensive outcrop exposure

o Hundreds of public well logs
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Foreland Basin Fill
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Recent work...

-Hettinger and Kirschbaum (2002) Provided a regional stratigraphic synthesis

-Horton et al., (2004) showed that extensive (~200 km) Castlegate progradation was coeval
with thrust-belt development

-Aschoff, (2008) and Aschoff and Steel, (GSA Bulletin,2011) highlighted an interval (the LAR

Wedge) with 2x as much progradation as Castlegate Ss. developed coeval with both thin- and
thick-skinned deformation

-Aschoff and Steel (Sed Geol, 2011) identified two types of clastic wedges:
High aspect ratio wedges

A low aspect ratio wedge



Part 1: Role of Tectonics

Local Structural Influence
= Uplift of a single, localized (10’s km) structure
= Reduces local(?) subsidence, diverts depositional systems and
creates local unconformities
Regional Structural Influence
= Uplift of a thrust-belt

= Sinuosity of thrust-front (i.e., salients, reentrants, transverse zones)
and its control on major sediment entry points

= Flexural subsidence of crust adjacent to thrust-belt
= [sostatic rebound

“Mega-regional” Tectonic Influence
= Subduction-related asthenospheric corner-flow
= Dynamic subsidence predicted when subduction angles are flat

= Creation of dynamic topography (uplift) when subduction angles
are steep



Part 1: Role of Tectonics
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Summary:
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Growth Strata
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Dataset

Detailed Growth-strata Study
(Valora-and Aschoff, In Press)
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Isopach Map (ft)

Composite- Onlapping+Offlapping Sequence Sets
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Isopach Map (ft)
LAR Wedge- OFFLAPPING SEQUENCE SET
75.1-75.2 Ma
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Isopach Map (ft)

LAR Wedge- ONLAPPING SEQUENCE SET
75.1-75 Ma
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Volume and Sediment Flux Calculations

A. Not Decompacted

Sequence Stratal Volume (km3) Duration (My) Stratal Flux Partial or complete system
(Age Ma) (km3/My) calculated
S4- .2-
43 (75 1,987.1 0.1 19,871.5 Complete
75-1)
Sg4- Aa-
44 (751 2,055.1 0.1 20,551.1 Complete
75-0)
B. Decompacted
Sequence Sediment Volume Duration (My) Sediment supply Partial or complete system
(Age Ma) (km3) (km3/My) calculated
S4- .2-
43(75 6,304 0.1 63,049 Complete
75-1)
S-4 (75.1-75.0) 6,585 0.1 65,859 Complete




Forward Stratigraphic Modeling

Dionisos (Diffusion-based)

Model Input Parameters
(1) Bathymetry
-assumed to be very gently, broad slope 0.1°
(2)Subsidence
-calculated using ispoach maps that show location of subsidence
(3)Sea level

-calculated using stratigraphic profile and superimposing sinusoidal fluctuation on
top of that

(4) Location of Sediment Input
-sediment input was controlled by structural transverse zones in the thrust-belt
(5)Direction of Sediment Transport
- to the east
(6) Sediment Transport efficiency
Continental- Sand 668 km2/kyr Shale 1490 km?2/kyr

Marine- Sand 2.23 km?2/kyr Shale 11.1 km2/kyr



/7-75 Ma (entire wedge)

Percentage of Sand

0 km 270
L ]

- :[Onlapping

jOfflapping

§4-2




Sth order sequences

B

Bathymetry (m)

-.~

géssaéc‘&és

Pr,UT

GJ,CO

54-4




Dionisos Model
LAR Wedge- OFFLAPPING SEQUENCE SET
75.1-75.2 Ma

B  Strongly Offlapping Seq. Set (54-3)- Dionisos Model




Dionisos Model
LAR Wedge- ONLAPPING SEQUENCE SET
75.1-75 Ma




Sequence stratigraphy
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Conclusions

= Thrust-belt and Laramide tectonics active throughout the
development of the LAR Wedge. Both on- and offlap were

affected by both structural styles.

= Sediment flux does not vary greatly between the onlap and
offlapping sequence sets. However, the onlap has a slightly

higher supply.

= Highest frequency changes in architecture li
level change, but the off- and onlapping seq
architecture within the LAR wedge is likely c

Kely due to sea-
uence
ue to increased

dynamic subsidence, which affected a broac

dlred

= Dionisos models sediment fluxes very close to measured but

tended to underestimate the flux

= Are we tracking cycles of dynamic subsidence??
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