Evaluating the Roles of Sediment Supply and Tectonics Using Growth-strata Analysis, Sequence Stratigraphy, Forward Stratigraphic Modeling and Sediment Volume Calculations: An Example from the Cordilleran Foreland Basin, USA*

Jennifer Aschoff and Jared Rountree

Search and Discovery Article #50648 (2012)**
Posted July 16, 2012

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Long Beach, California, USA, April 22-25, 2012.
**AAPG©2012 Serial rights given by author. For all other rights contact author directly.

1Colorado School of Mines, Golden, CO (jaschoff@mines.edu)

Abstract

Although the importance of sediment supply is widely accepted, most studies of the ancient must assume constant supply because it is difficult to quantify or model. Because changes in sediment supply or tectonics can result in similar architectures, it is not possible to know the exact stratigraphic response to specific tectonic processes without assessing drivers independently. We present a comprehensive analysis of two contrasting stratigraphic architectures within a Campanian low-aspect-ratio (LAR) clastic wedge in the Cordilleran Foreland basin (CFB) that 1) quantifies sediment supply for onlapping and offlapping sequence sets within the LAR wedge, 2) tests limits of diffusion-based, forward stratigraphic modeling (Dionisos) to calculate supply and 3) uses growth-strata correlation to disentangle structural drivers. Previous correlations of Aschoff and Steel (2011) were extended using a database of 78 well-logs and 30 stratigraphic profiles. The new correlation and isopachs provide the 3D perspective needed to quantify supply and highlight affects of Laramide uplifts, using growth-strata and thinning. Stratal volumes were calculated for onlapping and offlapping parts of the LAR wedge, using the regional sequence-stratigraphic framework and isopach maps covering ~600,000 km² of the CFB; stratal volumes were decompacted and converted to sediment flux, using biostratigraphic age-control. Volume calculations yielded sediment fluxes of 63,049 km³My-1 for the offlapping and 65,859 km³My-1 for the onlapping sequence set. Forward stratigraphic modeling, using numerous known input variables, yielded sediment fluxes of 27,217 km³My-1 for offlapping and 27,308 km³My-1 for onlapping sequence set. Both methods yielded similar sediment fluxes, indicating little variation in supply despite contrasting stratigraphic architecture. Uplift of the Uinta Mountains was constrained to upper Campanian, based on new isopach maps showing an east-west-trending depozone along the southern Uinta Mountains and correlation of growth-strata to basin-fill. Backstripping by Liu et al. (2011) suggest that dynamic subsidence migrated far eastward, away from the main depozone of the LAR wedge during the Sevier-Laramide transition. Migration of dynamic subsidence may have catalyzed the 3rd-order LAR wedge, but higher frequency architectural changes within the wedge were likely due to local Laramide structures, such as the San Rafael Swell (SRS) and the Uinta Uplift, not sediment supply.
Selected References

Horton, B.K., K.N. Constenius, and P.G. DeCelles, 2004, Tectonic control on coarse-grained foreland-basin sequences; an example from the Cordilleran foreland basin, Utah: Geology, v. 32/7, p. 637-640.

Evaluating the Roles of Sediment Supply and Tectonics using Growth-strata Analysis, Sequence Stratigraphy, Forward Stratigraphic Modeling and Sediment Volume Calculations: An Example from the Cordilleran Foreland Basin, USA
Outline

- External Stratigraphic Drivers
- Problems
- Scientific Questions
- Cordilleran Foreland Basin - Geologic Context
- Part 1 - Growth-strata Analysis + Tect. Controls
- Part 2 - Sediment Supply
 - Mega-regional Correlation
 - Sediment Volume Calculations
 - Forward Stratigraphic Modeling
- Conclusions
External Stratigraphic Controls

- Eustasy
- Tectonics
 - Subsidence
 - Sediment loading
 - Dynamic
 - Flexural
 - Source Rock Lithology
 - Source Relief
 - Basin Area
 - Climate
- Accommodation
- Sediment Supply
- Foreland Basin Fill

Rountree, 2011
Predicted Stratigraphic Architecture

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage Basin Size/Geometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplift of Rocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment Source Lithology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accommodation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Level Amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea-level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Subsidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Structural Uplift</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paola, 2000
Current Problems- Sediment Supply

Numerical and Physical Models
- Difficult to up-scale to ancient sedimentary systems and basins
- Assumptions about sea-level, tectonics, stratal preservation, etc.

Quantifying in the Ancient
- Requires detailed, basin-wide correlation
- Must encompass entire “container” of sediment
- Requires good age control
- Assumptions with decompaction

Best Approach- Integration
Objectives and Approach

Evaluate Role of Tectonics
(see Aschoff and Steel, 2011 GSAB; Valora and Aschoff, 2012 UGS Report)

- Growth-strata analysis - local thrust-belt structures
- Regional Correlation with Sequence Stratigraphy and Biostratigraphic Control

Quantify Sediment Flux for End-member Strat Geometries

- Construct regional outcrop-subsurface connection for 4D view of basin-fill
- Calculate stratal volumes for select 4th and 5th order depositional sequences
- Convert to sediment volumes using decompaction

Forward Stratigraphic Model of End-member Strat Geometries

- Dionisos - diffusion-based forward stratigraphic model
- Input well known basin geometry, subsidence, sea-level curve, time-lines and stratigraphy
- Test the limit of Dionisos by modeling contrasting 4th-order sequences as well as 5th-order stratigraphic sequences
NA Cordilleran Foreland Basin Western USA

Best-studied Foreland Basin
- High-resolution Ammonite Zones
- Radiometric Dates
- Bentonites/ashes
- Extensive outcrop exposure
- Hundreds of public well logs

From Aschoff and Steel, 2011
Recent work...
-Horton et al., (2004) showed that extensive (~200 km) Castlegate progradation was coeval with thrust-belt development
-Aschoff, (2008) and Aschoff and Steel, (GSA Bulletin, 2011) highlighted an interval (the LAR Wedge) with 2x as much progradation as Castlegate Ss. developed coeval with both thin- and thick-skinned deformation
-Aschoff and Steel (Sed Geol, 2011) identified two types of clastic wedges:
 High aspect ratio wedges
 A low aspect ratio wedge
Part 1: Role of Tectonics

Local Structural Influence

- Uplift of a single, localized (10’s km) structure
- Reduces local(?) subsidence, diverts depositional systems and creates local unconformities

Regional Structural Influence

- Uplift of a thrust-belt
- Sinuosity of thrust-front (i.e., salients, reentrants, transverse zones) and its control on major sediment entry points
- Flexural subsidence of crust adjacent to thrust-belt
- Isostatic rebound

“Mega-regional” Tectonic Influence

- Subduction-related asthenospheric corner-flow
- Dynamic subsidence predicted when subduction angles are flat
- Creation of dynamic topography (uplift) when subduction angles are steep
Part 1: Role of Tectonics

Base map from Willis (2008)
Summary:

- 9 Syntectonic Unconformities
- 4 Main Unconformity-bound packages (2 upper and 2 lower)
- Upper Growth-strata packages correlate to LAR Wedge
- Major Transgressive Surface correlates with the base of the Anchor Mine Tongue
Summary:
- 9 Syntectonic unconformities
- Uppermost 3 SU-bound packages correlate to forced regressive and onlapping sequence sets
Part 2: Role of Sediment Supply

Dataset

Detailed Growth-strata Study (Valora and Aschoff, In Press)
Architecture of the LAR wedge

(Aschoff and Steel, 2011)
Isopach Map (ft)
Composite- Onlapping+Offlapping Sequence Sets
75.2-74.9 Ma
Isopach Map (ft)
LAR Wedge- OFFLAPPING SEQUENCE SET
75.1-75.2 Ma
Isopach Map (ft)
LAR Wedge- ONLAPPING SEQUENCE SET
75.1-75 Ma
Volume and Sediment Flux Calculations

A. Not Decompacted

<table>
<thead>
<tr>
<th>Sequence (Age Ma)</th>
<th>Stratal Volume (km3)</th>
<th>Duration (My)</th>
<th>Stratal Flux (km3/My)</th>
<th>Partial or complete system calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4-3 (75.2-75.1)</td>
<td>1,987.1</td>
<td>0.1</td>
<td>19,871.5</td>
<td>Complete</td>
</tr>
<tr>
<td>S4-4 (75.1-75.0)</td>
<td>2,055.1</td>
<td>0.1</td>
<td>20,551.1</td>
<td>Complete</td>
</tr>
</tbody>
</table>

B. Decompacted

<table>
<thead>
<tr>
<th>Sequence (Age Ma)</th>
<th>Sediment Volume (km3)</th>
<th>Duration (My)</th>
<th>Sediment supply (km3/My)</th>
<th>Partial or complete system calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4-3 (75.2-75.1)</td>
<td>6,304</td>
<td>0.1</td>
<td>63,049</td>
<td>Complete</td>
</tr>
<tr>
<td>S-4 (75.1-75.0)</td>
<td>6,585</td>
<td>0.1</td>
<td>65,859</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Forward Stratigraphic Modeling

Dionisos (Diffusion-based)

Model Input Parameters

1. **Bathymetry**
 - assumed to be very gently, broad slope 0.1°

2. **Subsidence**
 - calculated using ispoach maps that show location of subsidence

3. **Sea level**
 - calculated using stratigraphic profile and superimposing sinusoidal fluctuation on top of that

4. **Location of Sediment Input**
 - sediment input was controlled by structural transverse zones in the thrust-belt

5. **Direction of Sediment Transport**
 - to the east

6. **Sediment Transport efficiency**
 - **Continental- Sand** 668 km2/kyr **Shale** 1490 km2/kyr
 - **Marine- Sand** 2.23 km2/kyr **Shale** 11.1 km2/kyr
77-75 Ma (entire wedge)
Dionisos Model
LAR Wedge- OFFFLAPPING SEQUENCE SET
75.1-75.2 Ma
Dionisos Model
LAR Wedge- ONLAPPING SEQUENCE SET
75.1-75 Ma
<table>
<thead>
<tr>
<th>Sequence Architecture</th>
<th>Isoach Volume (km^3) (undecomposed)</th>
<th>Isoach Flux (km^3/My) (undecomposed)</th>
<th>Isoach Volume (km^3) (decomposed)</th>
<th>Isoach Flux (km^3/My) (decomposed)</th>
<th>Dinosos Volume (km^3) (undecomposed)</th>
<th>Dinosos Flux (km^3/My) (undecomposed)</th>
<th>4th order</th>
<th>5th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Onlapping</td>
<td>2,055</td>
<td>20,551</td>
<td>6,585</td>
<td>65,589</td>
<td>2,730</td>
<td>27,308</td>
<td>S4-5</td>
<td>S5-18 to S5-20</td>
</tr>
<tr>
<td>Strongly Offlapping</td>
<td>1,987</td>
<td>19,871</td>
<td>6,304</td>
<td>63,049</td>
<td>2,217</td>
<td>27,217</td>
<td>S4-4</td>
<td>S5-13 to S5-17</td>
</tr>
</tbody>
</table>

Ages

- **D. chevrotini**
- **B. jaqueti**
- **D. stenomorini**
- **D. advenus**
- **B. scotti**
- **B. Pergamen**

Seq 5-3

Seq 5-2

Seq 5-1

S4-2

S4-3 S5-4 to S5-12

S4-4 S5-13 to S5-17

S4-5 S5-18 to S5-20
Conclusions

- Thrust-belt and Laramide tectonics active throughout the development of the LAR Wedge. Both on- and offlap were affected by both structural styles.
- Sediment flux does not vary greatly between the onlap and offlapping sequence sets. *However*, the onlap has a slightly higher supply.
- Highest frequency changes in architecture likely due to sea-level change, but the off- and onlapping sequence architecture within the LAR wedge is likely due to increased dynamic subsidence, which affected a broad area.
- Dionisos models sediment fluxes very close to measured but tended to underestimate the flux.
- Are we tracking cycles of dynamic subsidence??
Thank you

CSM Basin Analysis Initiative for Funding
Didier Granjeon, IFP
ConocoPhillips Spirit Scholarship to Jared Rountree
Drs. Donna Anderson and Piret Plink-Bjorklund for informal reviews