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Abstract

This study addresses how reservoir-scale permeability models vary depending on the scale of investigation of the input permeability values. A
common practice in reservoir modeling is to directly use permeability measurements from core-plugs or probe permeametry in petrophysical
modeling. The petrophysical models may have varying grid sizes but are often 5-7 orders of magnitude larger than scale of investigation (volume
support) of the permeability measurement. This scale difference can produce unrealistic results in the petrophysical model and may not be
representative of the reservoir heterogeneity.

To explore this issue, two stratigraphic intervals, the Sussex (Terry) and Shannon (Hygiene) sandstones of the Denver Basin (within Wattenberg
and Spindle fields), were selected for permeability analysis, near-wellbore modeling for effective properties, and 3-D reservoir-scale modeling.
The stratigraphic units represent shoreline sandstones and exhibit six common lithofacies. Permeability values by lithofacies (N=520 per core)
from four cores were measured using probe permeametry and used as inputs for near-wellbore modeling to generate effective-permeability
values using flow-based upscaling. The effective-permeability values exhibit a narrower distribution as compared to the original permeameter-
scale values. Reservoir-scale, three-dimensional models [1 mi® (1.6 km?)] of lithofacies, porosity, and permeability for the Shannon and Sussex
were constructed for an area in the Spindle Field. Separate permeability models were generated using the original- and effective-permeability
values. Using porosity and permeability cutoffs (>10% and >0.05md), the models were explored in terms of static connectivity of reservoir-
quality sandstone and show the differences in connected volumes as a function of the input permeability values (original vs. effective). The
models show differences in static “reservoir” connectivity as related to original- and effective-permeability that can be significant in terms of
properly representing reservoir heterogeneity. The models illustrate the importance of scale of investigation when creating 3-D reservoir models
of petrophysical properties.
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