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Abstract

Deepwater depositional processes result in complicated patterns of facies distribution. The physical properties of the sediments retained in each
facies have significant impact on reservoir quality, connectivity, and flow deliverability. Therefore, properly describing the stratigraphic
complexity, especially the architecture of various facies, is one of the key issues facing the geoscience community when tackling the tasks in
reservoir characterization and modeling. This article presents a new methodology in which a number of processes are built into an integrated
workflow for facies analysis and reservoir modeling. These processes include:

* outcrop analog and development of conceptual depositional models,

» whole core description and detailed facies recognition,

e Multi-Resolution Graph based Clustering (GRGC) analysis to group the detailed facies types into fewer number of facies associations,

» prediction of facies associations in uncored intervals,

* propagation of facies associations in 3D space, and

 distribution of facies-linked reservoir properties (net-to-gross, porosity, etc.) in the geological model.

The article also shows a case study in the Gulf of Mexico to delineate the workflow, and discusses some necessary details in topics related to
facies analysis, grouping, and reservoir property distribution.
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Intfroduction

B Deepwater depositional processes result in complicated patterns of facies
distribution.

= Channel, levee, lobe, transitional, slumps. pelagic mud, etc

M The facies types, their configuration, and physical properties of the sediments
retained in each facies have significant impact on reservoir quality,
connectivity and flow deliverability.

M Therefore, properly describing the stratigraphic complexity, especially the
architecture of various facies, is one of the key issues facing the geoscience
community.

M This paper presents a new methodology in which a number of processes are
built into an integrated workflow for facies analysis and reservoir modeling.
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Why depositional facies are important

Amalgamated
channels

Amalgamated
sheet sands

Layered sheet

Modified from Booth et al, GCSSEPM, 2006

Conceptual geological
scenarios

Design and
development of
reservoir model
workflow

Implication of
reservoir connectivity
and pore volume

Bottom line: project
economics and long-
term planning
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M Outcrop analog and development of conceptual depositional models

M Whole core description and detailed facies recognition
= Rock types

» Facies and facies associations

B Multi-Resolution Graph-based Clustering (GRGC) analysis to group the detailed
facies types into fewer numbers of facies associations (facies groups)

M Prediction of facies associations in uncored intervals using standardized logs

M Propagation of facies associations in 3D model space
= Data and logic driven

= QC: comparison of facies proportions in different scales

M Distribution of facies-linked reservoir properties (net-to-gross, porosity, SW
and so on) in the geological model

[ | ° i i i '
Further QC: volumetric evaluation on different scenarios N
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Lobe complex
A
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Lobe Lobe element

Hierarchy of elements:

Lobe complex
40 km x 30 km x 50 m

Lobe

2Tkmx13kmx5m

\ 4

Lobe element
Skmx35kmx2m

4

Bed

100smx 100s mx 0.5 m

Older lobe

(Modified from Groenenberg et al., 2010, J. Sedimentary Research)

Importance of Analog

Object modeling
Scale comparison
Aspect ratio: width, length, and thickness
Progradational versus retrogradational successions
Reservoir property distribution
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Recognizing Deepwater Sediment Facies Variation

B On one hand: Not all the units present in all outcrops or inferred subsurface facies profiles.
B On the other hand: One facies unit may contain multiple facies types, at least at core scale.

Pelagic and hemipelagic mud
Laminated silts

Cross laminated sands; ripples;
(lower flow regime)

Parallel laminated sands
(upper flow regime)

Massive sand and granules;
rapidly deposited under
upper flow regime

Scoured base with tool marks, ,
flutes, etc. Ny
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Four major facies groups for reservoir modeling purpose

Bouma Sequence

Pelagic and hemipelagic mud

Laminated silts

Cross laminated sands; ripples;
(lower flow regime)

Parallel [aminated sands
(upper flow regime)

Massive sand and granules;
rapidly deposited under
upper flow regime

Scoured base with tool marks,
flutes, etc.

Background

Channel/Lobe Axis

Core-Log
Integration




Facies Analysis and Grouping Methods

B Cluster

= Multi-Resolution Graph-Based Clustering (MRGC)
= Self Organizing Map
= Dynamic Clustering (DYN)

M Similarity
= Similarity Threshold Method (STM)

B Neural Network (ANN)

Benefits of MRGC method

* Required no prior knowledge of data structure
* No operation bias

* Faster against large datasets

’lv \\A”
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MRGC: Selection of Model Logs and Associated Logs

(Objective: Facies types from core analysis)
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rossplots showing

between various model logs
HODEL LOGS Histograms Crossplotsl
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MRGC Method: Concepts and Models

Optimal number of partitions

2 4 6 .8

e ——— =]

Individuals ranked by decreasing KRI

Breaks at decreasing ordered KRI curve define the optimal number of partitions

VAV
(Courtesy of Paradigm) MarathonOil
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Case Study: Facies Comparison in a 28 Clusters Model
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FACIMAGE.PHIT_SIM_1 ()

Facies Prediction and Grouping Based on Core Description

(From 22 facies to 4 facies groups)
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Facies analysis using Facimage (Geolog plug-in)
*  Conduct detailed facies analysis from core description (sedimentology / stratigraphy/
depositional environment).
* Define training data set and associated logs which are to be predicted
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*  Predict facies and then group the facies into meaningful facies sets. o~
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Facies = Depositional Environment + Rock Type + Properties

Well 1 GR Well 2 GR

The concept of
facies

Background @ T —_uu

Environmental
......... i Setting

Off-axis
(NTG, Phi, SW)

The materials
_ with the
e —————— = * context

................ — Axis M The properties

= (NTG, Phi, SW) of the materials

B Reflection of
facies in well
logs, outcrop
and subsurface
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Robust Facies Modeling Results in More Accurate Definition of

Reservoir Architecture

M Failure to recognize facies assemblages results in over-
simplification of reservoir architecture

B Reservoir model built unrealistically increases total
volume of sand

B Additional impact if NTG is not applied
B Sands that are not connected are considered connected

M Cause unexpected write-down later during field operation

A/
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Log Preparation

B Model Logs: the logs Facimage will use to perform the facies prediction

B Associated Logs: Example logs which are to be predicted

B Training Data: All or some of the model logs and associated logs. Should be a
good representation of the data in order to obtain credible predictions

B Wells must contain the same logs — model logs and associated logs must have
the same name.

B Logs must be put into the same set.

B Well and depth intervals for prediction must be specified.

A/
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Facies

Background

Offaxis

Facies modeling:
*Tired to wells

*Axis: Object modeling
*Off-axis and marginal:
Sequential indicator
simulation

Por modeling:

*Tired to wells
*Sequential Gaussian
simulation

nked Reservoir Froperries

SW modeling:

*Tired to wells

simulation

NTG modeling:
*Tired to wells
*Sequential Gaussian
simulation

Perm modeling:
*Tired to wells
*Sequential Gaussian
simulation




QC: Results of Facies Modeling

Comparison of Model and Well Facies Distribution
4 | 0 1 2 3

0 1 2 3

I LOG_FACIES [ 1 Upscaled cells [ well logs Ny
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Conclusion: Business Case for Facies Prediction

M Both in-place volume and connectivity are facies driven
M Have a geological framework model that needs to be
propagated with facies distribution

= No seismic: object modeling for reasonable stochastic analysis (trend
and body ratio based on knowledge)

= With seismic: object modeling driven by seismic trend (Al, PI, etc.)

B Have whole core intervals that have been studied
depositional facies in detail

M Have decent log suite that can be used to compare with
core studies

Needed for building a Reservoir Model

L N
Needed for reserve distribution Marathon Oil
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Conclusion: Predicting Deep-Water Depositional Facies

M Stochastic evaluation of total resource size for any reservoirs requires propagation
of depositional facies throughout the static reservoir model.

M Object facies modeling technique can be reasonably applied using industrial
software packages like Petrel.

M The key issue is to predict depositional facies using well log data and based on
detailed whole core description.

M The detailed facies types from core description can be simplified into a few facies
associations that satisfy the need for reservoir modeling.

M Facies prediction combining cores and log data makes the distribution of
depositional facies in area beyond the cored intervals possible, with or without
seismic control.
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