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Abstract

The observation that shallow-marine carbonate strata often have exponential lithofacies thickness distributions is of fundamental
importance. This is because it is an observation that can be tested for its repeatability in outcrop and subsurface examples, and also
because it raises the possibility that strata may be well represented with stochastic models with no intrinsic organization or hierarchy
present in the strata. Most importantly however, it is significant because it poses the fundamental question of what sedimentary
processes lead to the formation of particular lithofacies thickness distributions. This in turn links to the significant issue of how
carbonate strata record climatic change through geological time.

This work builds on previous work using a simple 1D numerical stratigraphic forward model of carbonate platform strata (Dougal) to
investigate how various controls such as amplitude and period of eustatic oscillation, variations in production rate, different lag depths
and variations in erosion rate can control the type of lithofacies distribution produced. Dougal records platform-top carbonate
accumulation influenced by water-depth dependent sediment production in euphotic, oligophotic and aphotic production profiles with
a lag-depth controlling onset of production.

Results from single model runs highlight the issue of non-stationary behaviour where statistical properties of the strata change with
elevation up the section, and show that exponential lithofacies thickness distributions can be generated from an entirely deterministic
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model, in contrast to the stochastic models invoked previously. Simple model runs illustrate how different types of lithofacies
distribution are constructed unit by unit as the depositional system responds to external forcing and internal autocyclic dynamics.
These analyses are substantiated with hundreds of thousands of model runs that show in detail how different lithofacies distributions
may arise under varying accommodation and production regimes likely to develop in different climate settings with different types of
eustatic curves and different types of carbonate factory.

This 1D modeling lays important foundations for reproducing lithofacies thickness distributions using 3D models of fine-scale
carbonate heterogeneity. An example of some initial results will be shown from CarboCAT, a 3D cellular automata model of
carbonate facies migration and accumulation.
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)
e Many measured sections from outcrop

show an exponential lithofacies thickness
frequency distribution

e Which means lots more thin beds than
thick beds
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What frequency distributions of lithofacies lateral extent exist in ancient carbonate strata?

Do lithofacies vertical thickness distributions relate to lithofacies lateral extents?

Are modern carbonate deposystems “snap shots” representative for the ancient record?

And what kind of lithofacies thickness and area distributions would result from the above
modern deposystems when they go through the preservation filter?
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e Modelling carbonate deposystems as a stochastic Poisson process lithofacies mosaic

e Very simple model but creates exponential lithofacies thickness distribution, as observed

in some outcrops
e But, no process explanation suggested by this model —you only get out exactly what was
put in

e And do all carbonate examples show an exponential distribution??
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How to Determine The Typ¢ Royal Holloway
Distribution

f | e A robust quantitative test is
required to determine if an
observed lithofacies thickness
distribution is exponential or not

e Kolmogorov-Smirnov test is
useful in this role

e Compares an observed
distribution with a theoretical
exponential for the same
number of lithofacies units and
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1D Modelling With Dougal: Royal Holloway
Assumptions

Productionzgoate (m My1)

e Maximum production rate remains NG
constant through time ° e

e Carbonate production rate is a function of
water depth, varying in a combination of
euphotic, oligophotic or aphotic

(w) ssauspa1yL

Water Depth (m)

Euphotic

160 ——— Oligophotic

 Different carbonate lithologies are ™
produced by the three different factoriesat =
different water depths

>

e Accommodation varies in a simple manner
according to two or three superimposed
periods of eustatic oscillation with a
background steady rate of subsidence

Raibl Fm.

e Subaerial and submarine erosion rates are
zero

Dirrenstein Fm.
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Presenter’s Notes: Complex variations in the rate of creation of accommodation, here due to high-frequency glacioeustatic oscillations, combined with
sediment production and accumulation rates that favour catch-up style deposition. Under these conditions water depth changes drive changes in rate and
type of carbonate accumulation and produce a mix of many thin beds and relatively few thick beds required for an exponential distribution. For
example, thin beds are often deposited during rapid transgression.
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Model Model set name # of Range of Range of Asymmetry Lag .
) . ) Proportion of model runs
Set model production amplitudes of of eustatic depth P <0.01 0.1>P>0.01 p>0.10
runs rates (mMy?) eustatic sea-level oscillations (m) .
. Exponential
oscillations (m) Not Indeterminate
exponential
Variable
1 roduction 4800 250-5000, 50- 10,50 & 20 11 2 9.8%
P , 1000, 25-300 ’ ' o7
symmetrical SL
Variable
2 roduction agop 200200020 10, 50 & 20 1:4 2 37.7%
P _ 1000, 25-300 ’ ' 70
asymmetrical SL
Variable SL
3 Low production 4400 500 2.5-50, 5-100, 0-50 1:4 2 15.3%
rate lag 2m
Variable SL
4 High production 4400 2500 2.5-50, 5-100, 0-50 1:4 2 32.6%
rate lag 2m
Variable SL
5 Low production 4400 500 2.5-50, 5-100, 0-50 1:4 0 9.3%
rate lag Om
Variable SL
6 High production 4400 2500 2.5-50, 5-100, 0-50 1:4 0 7.3%

rate lag Om
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Variable production, Symmetrical oscillations Variable production,
symmetrical SL oscillations

 Exponential examples occur for asymm?_F':_'_,C\E.g--l-'---;fSL._E_F)___SC'”atlons

narrow range of euphotic production
rates and are relatively insensitive to
oligophotic and aphotic production
rates.

Aphotic prod rate (mivty)

* High euphotic rates produce too
many thick units

Asymmetrical oscillations

 Distribution of exponentials is more
complicated due to asymmetric
curve

Aphote prod rate (mMy)
Apholic prod rate (miMy)

e Overall number of occurrences of
exponentials are similar in
asymmetrical versus symmetrical

cases
n=4400 for each plot

Aghabc prod rate (mily}

Aphaotic prod rate (mMy)

- p <0.01, good match with exponential

0.1 < p > 0.01, indeterminate

=" 5000

- p = 0.10, poor match with exponential
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Productiop rate (m My?) |

600

« Need to consider very carefully how the lj\\\ )
model results are influence by the model ;i; : %
assumptions and run more models with g . 3

140 ’ uphotic
different assumptions e.g. different ] S ;:;phoﬁc
180 —_—— Aphotic

production profiles

* A key objective is to compare model output
directly with outcrop examples via inversion
methods to see if additional insight can be

gained this way

* Also need to consider the objectivity and

repeatability of section logging...
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* How do the results from the 1D modelling

translate into 3D systems? Do the processes
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modelling also create exponentials in 3D

modelling?
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* Currently under investigation using new 3D

model CarboCAT
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o0 Exponential lithofacies thickness distributions can be generated from a
purely deterministic model.

0 Increasing the complexity in the model tends to lead to formation of
exponential thickness distributions. Examples of increased complexity are
additional frequency components of a eustatic sea-level curve, and adding
autocycle processes.

o0 Rate of sediment production is a key control. Euphotic factory production
rate appears to be a dominant control in these model runs, but probably
only because it has the highest production rates and is most responsible
for a “keep-up” stacking pattern

o Only 13% of the 27200 model runs created exponential distributions,
compared to 28% in the documented outcrop examples, suggesting that
other processes not included in this model play an important role e.g.
erosion during subaerial exposure, various sedimentary processes that
occur in three dimensions on platform tops and slopes...

0 Need to test these conclusions further with newly developed 3D models
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Variable SL, production 500mMy?, Variable SL, production 2500mMy1,

Production 500mMy, lag 2m

m
55 & 2
y

* Exponential distributions occur most
frequently at lower amplitudes of
23ky-period eustatic oscillations but
higher amplitudes of 112ky-period
oscillations

1.2My SL ampiitude {m)
5@ 2 0oE

e Higher amplitudes of 112ky SL
oscillations create complex
accommodation variations and
autocyles, favouring exponentials

yall i

1.2My SL amphtude (m)

i v gk

Production 2500mMy1, lag 2m

* The pattern at higher production rate
is similar but with an extended range
of Sl amplitudes

n=4800 for each plot
- p <0.01, good match with exponential

1.2My SL ampliude {m)
W g

0.1 < p > 0.01, indeterminate

- p = 0.10, poor match with exponential
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Variable SL, production 500mMy1,

lag Om

M 50m
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25
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e Both low and high
production cases show very
few exponential examples
across the range of
modelled SL amplitudes

* In high production cases the
lack of lag and hence the
lack of autocycles causes
too many thick beds for an
exponential distribution

n=4800 for each plot

- p <0.01, good match with exponential

0.1 <p > 0.01, indeterminate

- p = 0.10, poor match with exponential
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Variable SL, production 2500mMy1,

lag Om
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