"SA Database Approach for Constraining Fluvial Geostatistical Reservoir Models: Concepts, Workflow and
Examples*

Luca Colombera®, Fabrizio Felletti?, Nigel P. Mountney?*, and William D. McCaffrey*

Search and Discovery Article #40932 (2012)**
Posted May 29, 2012

* Adapted from poster presentation at AAPG Annual Convention and Exhibition, Long Beach, California, April 22-25, 2012
**AAPG©O2012 Serial rights given by author. For all other rights contact author directly.

'School of Earth and Environment, University of Leeds, Leeds, United Kingdom (eelc@leeds.ac.uk)
Dipartimento di Scienze della Terra, Sezione di Geologia e Paleontologia, Universita' degli Studi di Milano, Milano, Italy

Abstract

The sedimentary architecture of fluvial depositional systems is characterized by heterogeneities - manifested over a wide range of scales - that
control hydrocarbon distribution and fluid-flow behavior; thus, subsurface subseismic-scale sedimentological features are often tentatively
predicted by means of geostatistical modeling techniques, often conditioned by hard and soft sedimentological data obtained from outcrop
successions or modern rivers considered to be analogous to the reservoir. We propose an alternative database approach as a way to derive such
constraints from several classified case studies whose boundary conditions or architectural properties best match with the subsurface system that
needs to be modeled.

The relational database characterizes the fluvial architecture of classified case studies from the stratigraphic record and modern rivers at three
different scales of observation, corresponding to three types of genetic unit (large-scale depositional elements, architectural elements and facies
units) that constitute the building blocks of reservoir models. The database case studies can be filtered on their boundary conditions or
architectural properties, generating composite datasets consisting of genetic-unit proportions, dimensions and transition statistics with which to
inform and condition fluvial reservoir models.

The potential value of the database in providing constraints to stochastic reservoir models is demonstrated by employing both object-oriented
and pixel-oriented techniques to generate unconditional idealized models of fluvial architecture, associated to given system parameters (e.g. river
pattern), giving a special focus on the aptness of the hierarchically-nested database output to the integration of different modeling techniques into
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the same reservoir model, with the scope to improve and/or validate predictions. In addition, the simulation outcomes work as graphical
representations of stratigraphic volumes of given synthetic depositional/facies models of fluvial architecture and could be employed as training
images to constrain multi-point statistics-based reservoir models.
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ABSTRACT

The sedil hi ire of fluvial d | systems is. d by heterc
manifested over a W|de range of scales — that control hydrocarbon distribution and fluid-flow behawor
thus, subsurface -scal features are often tentatively predicted by means
of geostatistical modeling techniques, often conditioned by hard and soft sedimentological data
obtained from outcrop successions or modern rivers considered to be analogous to the reservoir. We
propose an alternative database approach as a way to derive such constraints from several classified
case studies whose boundary conditions or architectural properties best match with the subsurface
system thatneeds to be modeled.

The { database ct izes the fluvial of ified case studies from the
stratigraphic record and modern rivers at three different scales of observation, corresponding to three
types of genetic unit (large-scale depositional elements, architectural elements and facies units) that
constitute the building blocks of reservoir models. The database case studies can be filtered on their

boundary oondmons ora hi | properties, ing composite datasets consisting of genetic-
unit proportions, and transition with which to inform and condition fluvial reservoir
models.

The potential value of the database in providing constraints to stochastic reservoir models is
demonstrated by employing both object-oriented and pixel-oriented techniques to generate
unconditional idealized models of fluvial architecture, associated to given system parameters (e.g.
river pattern), giving a special focus on the aptness of the hierarchically-nested database output to the
integration of different modeling techniques into the same reservoir model, with the scope to improve
and/or validate predictions. In addition, simulation realizations depict results as graphical
representations of stratigraphic volumes of given synthetic depositional/facies models of fluvial
architecture and these could be employed as training images to constrain multi-point statistics-based
reservoirmodels.
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FAKTS GENETIC UNITS: classifications Facies units
. a- oL InFAKTS, fa
b lithofacies type down to the decimetre scale,

Depositional elements

Depositional elements are classified as channel-complex or floodplain
elements. C represent I-bodies defined on
e basis of exible bt unambiguous geometrical criteria, and are not
related to any particular genetic significance or spatial or temporal
scale; they range from the infills of individual channels, to compound,
multi-storey valley-fils. This definition facilitates the inclusion of
datasets that are poorly characterized in terms of the geological
meaning of these objects and their bounding surfaces (mainly
subsurface datasets).

Floodplain
channel-complex uevmmon as ﬁoodplam deposlts et
according

Rakaia River channel-belt (New Zealand.) From Google Earth™

Architectural elements

Following Miall's (1985, 1996) concepts, architectural elements are
defined as system with the
characteristic facies associations that compose individual elements

Code [ Legend | Architectural element type

Aggradational channel fill FAKTS s designed for ent lassified

according to both Mlal\s (1996) Classlfcal\on and also to a
to

Downstream-accreting macroform

Laterally accreting macroform
D & lat

make them more consistent In-terms of mew geomorphological

expression, so that working with datasets from modern rivers is

g easier. elements described according to any other

alternative scheme are translated into both classifications following
by Miall (1996) for their definition.

ly

Sediment gravity-flow body

Scour-hollow fill
Abandoned-channel fill

Levee
Overbank fines

Sandy sheetflood-dominated floodplain

Crevasse channel

Crevasse splay

Floodplain Lake
Coal-body

Undefined elements

Above: example preserved architectural elements (DA and LA barforms)
from the Lower Jurassic Kayenta Formation at Sevenmile Canyon (SE
Utah, USA).

Y
bounded by second- or higher-order (Miall 1996) bounding
surfaces. Lithofacies types are based on textural and structural
characters; facies classification follows Miall's (1996) scheme,
with minor additions (e.g. texture-only classes — gravel to boulder,
sand, fines — for cases where information regarding sedimentary
structures is not provided).

Code [Legend | Lithofacies type
Gravel to boulders - undefined structure

Matrix-supported massive gravel

Matrix supported graded gravel

Clast-supported massive gravel

Clast-supported inversely-graded gravel

Horizontally-bedded or imbricated gravel

Trough cross-stratified gravel

Planar cross-stratified gravel

Sand - undefined structure

Trough cross-stratified sand

Planar cross-stratified sand

Ripple cross-laminated sand

Horizontally-laminated sand

Low-angle cross-bedded sand

Scour-fill sand

Massive or faintly laminated sand
Soft-sediment deformed sand
Fines (silt, clay) - undefined structure
Laminated sand, it and clay

Laminated to massive silt and clay

Massive clay and silt

Fine-grained root bed

Paleosol carbonate

Coal or carbonaceous mud
Undefined facies

Above: example sandy facies units from the Lower Jurassic Kayenta
Formationin the Moab area (SE Utah, USA).
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BASIC
FAKTS

OUTPUT

FAKTS can be interrogated through SQL

queries in order to generate quantitative

information on fluvial architecture; this

information can be exported to
lysed and
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CH channel-fills

aspect ratio distribution

inavariety of forms.

The intemal organization of
genetic packages can be
characterized in terms of the
objects belonging to lower-order
scales.

Information on their composition is
given by the relative volumetric
proportions of their building
blocks. For example, the internal
composition of channel-
complexes or floodplains in terms
of architectural elements, and of

elements in terms of

facies units (as shown in the pie-

. w

N=154

charts) can be derived by
estimating volumetric proportions.
by object occurrences only, or by
combining occurrences and
dimensions in a variety of ways;
variably defined net.gross ratios
can then be easily computed for
each object.

ARCHITECTURAL-ELEMENT
PROPORTIONS

All systems

N=

2274

FILTERING ON
RIVER PA'I'rERN

Braided systems
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FAKTS allows density functions of be Genetic-unit transition statistics
derived or syntheses of aspect ratios for any genetic unit or genetic-
unit type to be computed, choosing whether to include or ot
(partial and
dimensions.
Width (m)
| 0 100 1000 10000 100000
.
€
3 Lateral trans
£ statistics involving
g downstream-accreting
£ Downstream barforms (DA elements)
(= in the Lower Jurassic
= Kayenta Fm. in SE Utah
_ FAKTS can be queried to derive data on ocourrences of ransitions between genetic units, in
« Width (N = 553) Channel-complexes order to obtain a quantitative description of spatial depositional trends. To further
« Apperent width (N = 137) characterize genetic units internally, transition statistics can be filtered so that only
= transitions observed within the type of element investigated and across given bounding-
+ Partil width (N = 132) width/thickness surface orders are taken into account. Through a special query, 2D- and 3D-dataset
aspect ratios transitions can be filtered with random selections in order to force the sampling to be one
* Unlimitd width (N = 155) dimensional.
STRIKE ‘genetic unit width = material unit width
Material-unit properties E=0d
We define FAKTS material units as contiguous volumes of sediment
characterized by having the same value of a given categorical or discretized
continuous variable, or of any combination of two or more of them. For
example we may wish to define a material unit on the basis of a given _ auey2
Iithofacies type, or on the basis of a threshold percentage content in clay and
silt, or on the combination of the two criteria. An individual material unit would
then correspond with all the physically adjacent FAKTS genetic units having
the required attribute values. Practically. this means that we can derive Query 3
virtually any type of user defined reservoir and non-reservoir categories and =
their relative reservoir-modeling constraints.
One important implication is that ms geometry of material units defined on genetic unit width
fror that type, P TY
invariably resulting in larger size Gistrbtons, which wil importantly control sieel it i
indicator variogram ranges. As material units are not directly stored within the L]
FAKTS database, they are generated by querying N-times for properly-
classified vertically and laterally juxtaposed genetic units, as sketched in the N  uxtaposed genetc units QueryN

figure onthe left.

MATERIAL UNITS

GENETIC UNITS

5 ) = ) B
Dimensional parameter (m)

DATABASE-DERIVED RESERVOIR MODELING CONSTRAINTS

asinputto software for the structure-imitating simulation of fluvial
— like size ratios, transition rates and indicator auto-
as outlined in greater

FAKTS output
y i some key input

detailin Colombera etal., accepted).

q

—

e CSICH vansiton >
Absolute and relative dimensions and geometry parameters  oimensiona parameters of flwvial genetic units are | T — o Object-based methods
commonly required by object-based algorithms for foutinely require relative
structure-imitating simulations of fluvial architecture. [ dimensional parameters
The inputis typically specified in the form of probabilty } i (e.g. channel-fill
e functions (e.g. triangular distributions CHICS traneiton 3 thickness/levee
Channel-fill thickness e defined by minimum, mode, and maximum values — f. thickness ratio; cf.
Channel-complex WIT Deutsch & Tran 2002) of genetic-unit thickness and Deutsch & Tran 2002) as
0 > o probability density function O e & FAKTS allows the

. @ all systems ] log-normal distribution SeRiEEe i D"E" o " o [ " Soomeoinm | | MPUt
z £ pressed as meander L derivation of size ratios
Z 0 @ braided systems 2 oo wavelength and amplitude (cf. Deutsch & Tran 2002), = referring to juxtaposed
< o bt somans S which can be related to FAKTS sinuosity parameter. genetic units belonging
T rdedsematdssens | 8 oo sedo os7 ChanmotcomplenS anston H fothe same scale (caseA
b © braided-semiarid-ephemeral | & —— 5 in figure on the left) or to
H ystems oo 10 15 20 25 30 35 | different scales (case B),
1 N as genetic unit sizes,
é_s juxtaposition (in form of
00, S w0 B0 20 w0 40 oo * transitions). and. scale-

o 2 4 6 s 0w I nesting are all digitized.
tickness (m) WIT ratio N=119 sinuosity parameter
FAKTS-INFORMED Method based
Yor(N) 4 INDICATOR VARIOGRAM MODEL on work by FAKTS vi(h) Indicator auto-variograms
FOR A GIVEN DIRECTION Ritzi (2000) database

0.0181 For every direction of FAKTS' ‘space, descnpﬂve s1ausucs (mean and coeflicient of variation) of the size of material units
(thickness, strik their the ranges of material-
LUNIT unit indicator auto-variograms, whereas el sie bon be sareuated rom mreraunt marginal probabilties (i.e.
proportions) and the variogram model inferred from the coefficient of variation of the dimensional parameters, as

MATERIAL-UNIT DIMENSIONS FOR THE
GIVEN DIRECTION:

MEAN EXTENSION

COEFFICIENT OF VARIATION

C\

h

FACIES UNITS

INDICATOR VARIOGRAM MODELS formulated by Ritzi (2000). . i
STRIKE (X) DIRECTION This means that FAKTS permits informing indicator variogram models referring to any type of material unit (so to any
defined reservoir and odeling categs whenever the scarcity of direct da(a impedes the typical
Fm fitting procedure: for reservoirs thi the casein the majority of
0.0053 ly nd y sp: indicator
P
0.0003,
0 2 4 60 8 h(m) Indicator cross-variograms

The sills of indicator cross-variogram models referring to a pair of material units for a given direction can be

Transition probabilities and rates

o)

Upper lithofacies F- uFi

ax

Fm =Fsm

= Gem mGh

i sax. o
Percentage of vertical transitions
Gmm Gt ®S- #Sd WSh mSI WSm =Sp S mSs A St

o

. sax o0

computed from unit proportions, as they approach —pp, (Carle & Fogg 1996), whereas cross-variogram ranges
are approximated by the lag values at the intersection between the sill of the cross-variogram for the same units
and the tangent (q, computed from unit proportions and transition rates) to the same cross-variogram at lag zero
(©

The example on the left shows vertical
transition-count statistics filtered so that only
facies unitransitions observed within a given
type of geneticunit(CH archi

On the left:
I | Relationship

between the
continuous-lag
transition
probability of
two material
units and the

and 37) are raken mm account. Transition
probability matrices can thereby be derived
from such transitions-count matrices.
Transition rates between units j and k along
direction x (r,.) can be estimated from mean
sizes and embedded transition frequencies or
probabilties (Carle 1997; 1999) as:

o= L f

t(h)

SPATIAL TRANSITION
PROBABILITY

Vi(h)
Analytical cross-variogram

indicator cross-

T = P L R h | variogram. A

1 oicATOR % database
Transition rates between materia units along CROSSVARIOGRAM . derived cross-

a given direction are required to obtain S .. ... .. | variogram mode

5n % database-derived indicator cross-variogram yu(h) is obtained from
models for the same material units along that ) . proportions and
direction, as explained on the right. ® ‘Sampled croee-variogram i |
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|IIustrated in Colombera et al. (accepted SC
‘ b i ; I( P' r)| INFORMING SEQUENTIAL INDICATOR SIMULATIONS ON BOUNDING-SURFACE ORDER DATA ALE "I -
ere we provide an example application to the ) S d : Uni : d d S2 9JT. U . . .
> EPSREQUIRED:
INDICATOR AUTO-VARIOGRAMS |~ MULTI-SCALE SIMULATION OF 1 ChOOI Of Earth an EnVIronment’ anerSlty Of Lee 5, Lee s’ L 2 T’ K @ Channelill (CH) architectural element | s:emim::mwm S —— plxel'based SImUIatlon
H A . A A Al H A A H H SIMULATION OF < +
' FLUVIAL ARCHITECTURE 2) Dipartimento Scienze della Terra, Universita di Milano, Via Mangiagalli 34, 20133, Milano, Italy o —
a - determination of indicator variograms of facies-type material to demonstrate the possbile application of FAKTS for derivation of quantitative architectural
information linked to bounding-surface order. Such soft data may find applcation in facies
modeling workflows. This s done by conditioning a stochastic pixel-based sequential indicator
47" et higher.order bounding surace simulation (SIS) of the internal facies organization of a CH (aggradational channel-fll)
. . . STEPS REQUIRED: architectural element (scale 1), performed by firstly placing the dominant 14 types of facies
RELATIVE DIMENSIONAL PARAMETERS | SCALE Il - p|xe| -based simulation IN-CHANNEL ARCHITECTURAL-ELEMENT PROPORTIONS AND DIMENSIONS units (scale 1) at a channel-base interface and subsequently simuiating the distrbution of
@ Channel-fill (CH) architectural element SIMULATION OF caseA-constiinngonsimulaled channekbase: facies units within the channel-body using the previously-simulated facies types for hard-data
Coes] 2 Mean  Mean  Number of - - AGGRADATIONAL - determination of marginal probabiltes of facies-ype material conditioning.
OBJECTIVES: ype thickness wioth  length readings g CHANNEL-FILL units occurting within hannaLls " Once again, all input parameters refer to an ideal system including all FAKTS data available
to demonstrate how FAKTS output can be used fluvial ting in simulated in-channel architectural elements (scale PTEE v v pvep— p—— Y FACIES (e.no y
11) within the previously-simulated channel-complexes (scale 1) - by provldlng input parameters that are commonly \acklng or poorly defined when working with direct data only, - determination of ndicator variograms of facies-type mateial E e i e
especially for 00 large for and ynoisy DA | 28m | 4oam | esm | mesmst - - - g
. : Tresaparameters nlde: DA | zam | szem | zzm | swmm previously simulated facies distribution 508 -no constranton simuited channebase facies-unit
Database-to-simulation workflow -indicator auto-varogrars, - cotrminaon o marga pbites o s o | 10 10 NGk base simulaions, and:
— INTERNAL ORGANIZATION OF SYNTHETIC CHANNEL-COMPLEXES i ) HO. 18m | 15m | t4m a3 it thin channelfils and overlying 2° o 3--orc - channel-body facies-unittype proportions,
indicator cross-variograms, units ocourting witin channelfls and overying 2° or 3 order .
MARKOV-CHAIN ANALYSIS OF ARCHITECTURAL ELEMENT TRANSITIONS transition probabilties/rates. LA a7m | s8am | 13am | 1247136 - channel-body facies-unittype indicator auto-variograms.
= Facies-type based material unit - determination of indicator variograms of facies-type material for the channel-body sir
. . . ¢ asec | i type m: -body simulations.
SCALE I+l - object-based simulation CROSS-STREAM DIRECTION UPSTREAM DIRECTION Algo, In order 'o demanstrats how the FAKTS elifput thet quaniiies Juxtapasiional T-POGS input mean dimensions: they are. variably proportions and indicator variograms unts occuring witin channekfls and overing 2°-or order | oo yape.
trends existing for units (indicator and transition T.Pr0GS and PGSim input required depending on the simulation approach (Carle boundingsurfaces :
probanitcsiates) i well suted o simulaton techniquss hat permit reproducton of i e e eleddspendn o SISIM (Deutsch & Journel 1998) is a GSLIB program that incorporates a SIS simulation
OBJECTIVE: cn DA [DlAl Ho | LA cn | oA [DLA[ HO | LA Soatnl through: Eisa s Brotione Indicator variogram models algorithm, which builds a categorical image within a 3D grid by simulating individual voxels by
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