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Abstract

Geomechanics can make a significant economic impact in tight gas reservoirs both in drilling and stimulation operations. The current
generation of geomechanical solutions models the formation assuming it is homogeneous and isotropic (HI). Most formations,
especially at the scale of the geomechanical problem, are heterogeneous and anisotropic. While HI models can be calibrated, changes
in pore pressure or fracture gradient are interpreted when, in reality, it is only the anisotropy that is changing. Because of the number
of unknowns, no single source of data is sufficient to solve the problem. Data must be integrated from multiple wells and across
multiple scales (e.g., core, log, and seismic scales). Acoustical logging data provide a natural starting point to solve these
multidisciplinary and multivariate geomechanical problems. A workflow is presented that first diagnoses the type of acoustical
anisotropy at the log scale. Core data, representative of the unfractured background matrix, is then integrated with the log data to
quantify static elastic properties. Fracture compliances can then be determined in the fractured intervals. Upscaling is then applied for
integration with the seismic data. An anisotropic mechanical earth model is constructed after the acoustical velocities have been
integrated with core and seismic data. The anisotropic earth model is then used to address a number of drilling and completion
problems. A variety of technologies were applied in different case studies, and these case studies illustrate how an understanding of
anisotropic geomechanics translates into both drilling and completion optimization.
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Production Variability is Enormous
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Performance of Perforation Clusters
Highly Variable; Many Clusters Non-Productive

Well No 5

33
29
5 25
2 21
© 17
213

111 1 111

0% 2% 4% 6% 8% 10% 12% 14%
% from Perf Cluster

Well No 7

Perf Cluster
>

4% 5% 6% 7% 8% 9% 10%

% from Perf Cluster

0% 1% 2% 3%

Perf Cluster

Well No 6

0%

5%

10%

15% 20%

% from Perf Cluster

Well No 8

25%

30%

35%

10%

20% 30%
% from Perf Cluster

40%

50%



Sweet Spot Characterization

Sweet Spot Definition

Reservoir Quality

— Porosity, lithology, saturation, permeability

— Fluid quality

Completion Quality

— Data requirements - vertical well, horizontal well

— Vertical well - Containment
— Horizontal well — Fracture complexity, completion design



Completion Quality — Vertical Wells

Data requirements
— |mages, acoustics, core

Stress

Directions
— Maximum horizontal stress
— Fracture strike

Containment via stress RS
— Magnitude of SigV, SigH and Sigh

Containment via heterogeneity :i 5:, I

Fractures

— Fractures
— Bedding




Completion Quality — Horizontal Wells

Wellbore images and acoustics . e

Structural complexity

Natural fracture attributes

Elastic Moduli
— Breakdown pressure
— Fracture compliance

Completion decisions
— Staging
— Completion materials, embedment




Anisotropy — 3 Types

Isotropic

— Property is the same in 3
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Acoustical Classification
3 Shear Moduli — 5 Major Cases
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Structural Anisotropy — Background Matrix is VT

Stiffness

= Upper Barnett
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Matrix + Vertical Fractures

Stiffness Image

SR NEEs g

BN gb 58 a8
WL BB S5 48
i .
i . RE LB
| WBEEEES

Lower Barnett

Multiple layers

Multiple fractures

Isotropic 777 5 -

Fast Shear —

Slow Shear > i f g
i

Stoneley Shear | il T 5 u

ENES uS®




Anisotropy Model
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Schoenberg & Sayers, Seismic Anisotropy of Fractured Rock, Geophysics 1995



Horizontal Well Acoustics
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Horizontal Well Completion Design

Completion Design — Linking two data sets with
Stimulation and Production modeling.
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Geologic Interpretation
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Integration of Geomechanics with Drilling Engineering

Aerated mud retum to shakers
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High risk of severe loss
circulation and wellbore
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wellbore strengthening
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Production Section
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fluid influx. Mibgaton
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mud weight in e
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control confingencies
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Conclusions

Formations are very complex
— Heterogeneous and generally anisotropic

Geomechanics can have a huge impact on both drilling and
completion efficiency

The key to geomechanics:

— Integration

— Wellbore images, acoustics, core
— Vertical and horizontal well data
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