Application of LMR and Clustering Analysis in Unconventional Reservoirs*

Roderick Perez¹

Search and Discovery Article #40879 (2012) Posted February 13, 2012

General Comments

- EUR estimation is a mullti-variable problem, divided in geological (reservoir) and engineering (completion) variables.
- Well log and seismic results show good correlation (calibration). LMR (Lambda-Mu-Rho) cluster analysis is useful to isolate brittle/ductile zones.
- LMR X-plots reveal that the Upper Barnett is more brittle than the Lower Barnett (mineralogy).

References

Goodway, B., 2009, Connecting active and passive seismic to describe geomechanical rock properties: Recorder, v. 34/2, p. 7-9.

Roy, A., R. Perez, and K.J. Marfurt, 2011, Formation Evaluation of Barnett Shale by Kohonen Self Organizing Maps – An Example from North East Fort Worth Basin: AAPG Search and Discovery Article #90124. Web accessed 31 January 2011, http://www.searchanddiscovery.com/abstracts/html/2011/annual/abstracts/Roy.html

^{*}Adapted from presentation at AAPG Geoscience Technology Workshop, "International Shale Plays," Houston, Texas, October 11-12, 2011

¹University of Oklahoma, Norman Oklahoma (roderickperez@ou.edu)

Application of LMR and Clustering Analysis in Unconventional Reservoirs

AAPG - GTW International Shale Plays October 11th, 2011

> Roderick Perez The University of Oklahoma

> > www.RoderickPerezAltamar.com

Outline

- OCOAL
- OLMIR INVERSION
- OCESULTS
- @ANALYSIS
- OCONCLUSIONS

Croal

Croal

 Use of seismic clustering techniques to identify heterogeneity and formation evaluation in the Barnett Shale

Application of LMR and Clustering Analysis in Unconventional Reservoirs

LAMBDA-RHO / MHU-RHO

INTEGRATION

Introduction

Methodology

Lamé Parameters

Original

Dipole log

 $\lambda \rho = Z_P^2 - 2Z_S^2$ $M\rho = Z_S^2$

M = Rigidity (Lame moduli)

= Incompressibility

Sonic Log

Modified from Goodway, 2009

Roderick Perez / AAPG GTW - International / October 11th, 2011

Appendix

STATIC MODULI AND MODULI RATIO DEFINITIONS IN TERMS OF LAME PARAMETERS

Young's Modulus

$$E = \frac{\mu(3\lambda + 2\mu)}{(\lambda + \mu)}$$

$$V_p = \sqrt{\frac{\lambda + 2\mu}{\rho}}$$

P-wave Velocity

$$V_s = \sqrt{\frac{\mu}{\rho}}$$

S-wave Velocity

$$M = \lambda + 2\mu$$

P-wave Modulus

$$\frac{E}{1+\nu}=2\mu$$

Young - Poisson Relation

Mechodology

AVO Inversion

Lambda-Rho & Mu-Rho from the area of study

Mu-Rho from representative inline of area of study

Mechodology

|--|

	Vp	Vs	Rho	λρ	MA
	ft/s	ft/s	kg/m³	108	108
Shale	12,600	8,000	2.55	41.6	15.9
Lime	20,000	10,500	2,7	80	90

300 Marble Falls Lm Upper Barnett Sh Forestburg Lm Lower Barnett Sh

Viola Lm

のエントラミ

Mechodology

Cro	SS-P	Lots

300

	Vp	Vs	Rho	λρ	MA
	ft/s	ft/s	kg/m³	108	108
Shale	12,600	8,000	2. <i>55</i>	41.6	15.9
Lime	20,000	10,500	2,7	80	90

Marble Falls Lm

Upper Barnett Sh

Forestburg Lm

Lower Barnett Sh

Viola Lm

15*108

Lambda-Rho

Mechodology

Roderick Perez / AAPG GTW - International / October 11th, 2011

Methodology

Roderick Perez / AAPG GTW - International / October 11th, 2011

Mechodology

Machadalaala

0 <u>S</u>

Methodology

300

Melhodology

Roderick Perez / AAPG GTW - International / October 11th, 2011

0 2 2

Melhodology

300 Upper Barnett Sh

Lambda-Rho

Roderick Perez / AAPG GTW - International / October 11th, 2011

Machadalaala

0 2 2

Mechodology

300

Lambda-Rho

Melhodology

Roderick Perez / AAPG GTW - International / October 11th, 2011

0 2 2

Machodology

300 Lower Barnett Sh

Lambda-Rho

Melhodology

Roderick Perez / AAPG GTW - International / October 11th, 2011

shale Comparison

Roderick Perez / AAPG GTW - International / October 11th, 2011

Mineralogy

Upper Barnett Shale Lower Barnett Shale

Others

34%

11%

Carbonates

Others

23%

Average composition of the Upper and Lower of the Barnett shale. PETROPHYSICAL MEASUREMENTS ON TIGHT GAS SHALE. ARGYRIOS KARASTATHIS, 2007.

33%

0

Logs vs. Seismic

Roderick Perez / AAPG GTW - International / October 11th, 2011

Q

Loas Vs. Seismic

Roderick Perez / AAPG GTW - International / October 11th, 2011

Clustering Analysis

www.RoderickPerezAltamar.com

Mu-Rho

0

Clustering Analysis

Lambda-Rho / Mu-Rho X-plot volume

0

Clustering Analysis

Roderick Perez / AAPG GTW - International / October 11th, 2011

Self Organizing Maps

Main features to identify Compartmentalization in Barnett shale

Zone of Analysis

11 strata slices from
each of the $\lambda \rho$ and $\mu \rho$ volumes within the
bottom part of the lower
Barnett shale

Cluster Assisted 3D and 2D unsupervised seismic facies analysis, an example from the Barnett Shale Formation in Fort Worth Basin Texas.

Roy and Perez, 2011

2D Multi-attribute analysis and coloring of each sample location Output 2D seismic Facies Map Co-rendering with the principal positive curvature Output

of the top Viola surface

Self Organizing Maps

Self Organizing Maps

corendered map

The 2D Multi-attribute map co-rendered with the principal positive curvature of the Viola lime

Cluster Assisted 3D and 2D unsupervised seismic facies analysis, an example from the Barnett Shale Formation in Fort Worth Basin Texas. Roy and Perez, 2011

LMR Inversion correlation to Production

Lambda-Rho

15*108

Analysis

Scenario 1 Ductile - High TOC zone

- Ductile High TOC
- Brittle Low TOC
- Frac Stage

Analysis

Scenario 2 Brittle - Low TOC zone

Ductile

Brittle

Frac Stage

CONCLUSIONS

- EUR estimation is a multi-variable problem, divided in geological (Reservoir) and engineering (completion) variables
- Well log and seismic results show good correlation (calibration). LMR cluster analysis is useful to isolate brittle / ductile zones
- LMR X-plots reveal that the Upper Barnett is more brittle than the Lower Barnett (mineralogy)

Summary

Acknowledgemei

- Devon Energy for providing the data for this research.
- Dr. Kurt Marfurt for his support and suggestions.
- @ ALL AASPI members

Thanks