Seismic to Geological Modeling Workflow, an Integrated Approach to Determine the Reservoir Quality of a Natural Fractured Limestone Reservoir: Oseil Field Example*

Arie Krisna Lopulisa¹, Roy Andrianto¹, and Anggoro S. Dradjat¹

Search and Discovery Article #20144 (2012) **
Posted May 14, 2012

General Comments

Oseil field, on the island of Seram, eastern Indonesia, is used as the example to apply an integrated approach to determine the quality of a naturally fractured limestone reservoir. Field data include:

Discovery date 1998 Type hydrocarbon heavy oil

Reservoir type fractured limestone

Limestone type oolitic, mudstone/wackestone-grainstone

Age and name of reservoir Jurassic Manuseal Formation

The following is the conclusion resulting from following the workflow associated with this approach:

- Integration of well and seismic data provides better comprehensive understanding.
- The result of seismic fracture intensity is aligned with the well.
- Total loss circulation during drilling correlates with the intensity of fractures.
- Seismic attributes should constantly be utilized to identify anomalies.
- More effort is needed to incorporate mud loss and drilling parameter into the update model.

^{*}Adapted from oral presentation given in Bali, Indonesia at the Geoscience Technology Workshop (GTW) on Reservoir Quality of a Fractured Limestone Reservoir, 15-17 February 2012

^{**}AAPG©2012 Serial rights given by author. For all other rights contact author directly.

¹CITIC Seram Energy Ltd (randrianto@citicseram.com)

Seismic to Geological Modeling Workflow, an Integrated Approach to Determine the Reservoir Quality of a Natural Fractured Limestone Reservoir: Oseil Field Example

Arie Krisna Lopulisa Roy Andrianto Anggoro S Dradjat

CITIC Seram Energy Ltd

Agenda

- Introduction
- Background
- Workflow
 - 1. Fracture Analysis
 - 2. Seismic Anisotropy
 - 3. Geological Modeling
 - 4. Discrete Fracture Network
 - 5. Well Placement
 - 6. Seismic Attribute
- Conclusion

Introduction

Regional Geology

15-17 Feb 2012

Bali Indonesia

AAPG-EAGE Joint GTW on

Fractured Carbonate Reservoir

Introduction

Oseil Field Depth Structure Map

General Info:

• Discovery of Oseil: 1998

• First Oil: Dec 2002

Hydrocarbon Produced : Heavy Oil

• Reservoir type : Fractured Carbonate

• Formation name: Manusela Fm

• Age: Jurassic

• Limestone type : oolitic limestone, mudstone/wackestone - grainstone

Background

Main Challenges in Oseil Field

- High Heterogeneity Reservoir
- Fast & Severe Water Break-through
- Complex Fracture System
- Time Depth Conversion
- Drilling / operation challenges (total loss)
- Remote areas high operating cost

Background

Study Purpose

- Better understanding of the Reservoir
- Increase accuracy in Well Placement
- Increase Production

Workflow

availability

AAPG-EAGE Joint GTW on Fractured Carbonate Reservoir

Workflow - Well Based Fracture Analysis

NUA-1

NUA-2

Fracture Analysis

AAPG-EAGE Joint GTW on Fractured Carbonate Reservoir

Workflow - Well Based Fracture Analysis

Oseil 1/4 field

NUA field

Oseil Selatan

Prospect

NUB

Prospect

Fracture Analysis based on core data

Close-up whole core photographs well NUA-3 of Manusela Formation

AAPG-EAGE Joint GTW on Fractured Carbonate Reservoir

CITIC Seram Energy Limited Seismic Anisotropy for Fracture Detection

Workflow - Seismic Anisotropy

Fracture Intensity Wells Vs Seismic

The correlation of fracture intensity between the 3 exploration wells and the seismic inversion result shows a good match

Seismic Inversion section of Os-1, Os-9 to Os-18

Workflow - Geological & Fracture Modeling

Geological & Fracture Modeling of Oseil field

- High-quality static reservoir model is required to perform simulations in order to predict the fluid dynamic
- A 3D reservoir model enables us to integrate multidata (well data, seismic data, conceptual models, production data) for a more reliable result
- Ability to generate and simulate a dual-poro dual-perm reservoir behavior

Workflow - Geological & Fracture Modeling

Geological & Fracture Modeling of Oseil field

15-17 Feb 2012

AAPG-EAGE Joint GTW on

Bali Indonesia Fractured Carbonate Reservoir

Workflow - Geological & Fracture Modeling

Example: Matrix Porosity Modeling Result

Workflow - Geological & Fracture Modeling

Fracture Modeling

15-17 Feb 2012

AAPG-EAGE Joint GTW on

Bali Indonesia

Fractured Carbonate Reservoir

Workflow - Geological & Fracture Modeling

Input for Model Parameter

Model parameters are the object that controls the intensity of the fracture, called fracture drivers.

- Lithological/Facies drivers
- Seismic drivers
- Mechanical drivers

Workflow - Geological & Fracture Modeling

Discrete Fracture Network

• A fracture network is a group of planes representing fractures.

Distribution Method:

Use the Intensity from distance to fault and seismic fracture intensity

Geometry:

Fracture Aperture, QC with the data from image log & core data

Orientation:

Main trend of azimuth/dip should be inline with the fracture from well

15-17 Feb 2012 Bali Indonesia **AAPG-EAGE Joint GTW on**

Fractured Carbonate Reservoir

Workflow

The Well Placement in Oseil Field

- Undrained area
- The distance from oil-water contact and target zone in upper part of Manusela fm
- Fracture intensity
- Interference well analysis
- Avoid the fracture directly connected to aquifer zone
- Horizontal length

Workflow - Well Placement

Well Placement Results

- 4 new development wells were proposed & designed based on this integrated study
- The positive economic results shown from these 4 wells. The most successful well (Os-2 ST2) and Os-16 well with < 0.5% water cut.

Os-2ST2

AAPG-EAGE Joint GTW on

Bali Indonesia

15-17 Feb 2012

Fractured Carbonate Reservoir

Os-16

Avoid the fracture directly connected to aquifer zone Well with early water break-through

Workflow - Seismic Attribute

Ant-Track result-- Avoid the fracture directly connected to aquifer zone

Conclusion

- Integration of well & seismic data provides better comprehensive understanding
- The result of seismic fracture intensity is aligned with the well
- Total loss circulation during drilling correlates with the intensity of fractures
- Seismic attributes should constantly be utilized to identify anomalies
- Need more effort to incorporate mud loss and drilling parameter into the update model

Questions

Thank You