WolfBone Play Evolution, Southern Delaware Basin: Geologic Concept Modifications That Have Enhanced Economic Success*

Bill Fairhurst¹, Mary Lisbeth Hanson¹, Frank Reid¹, and Nick Pieracacos¹

Search and Discovery Article #10412 (2012)** Posted June 18, 2012

*Adapted from oral presentation given at AAPG 2012 Southwest Section Meeting, Ft. Worth, Texas, May 19-22, 2012 Please refer to a closely companion article, entitled "Evolution and Development of the WolfBone Play, Southern Delaware Basin, West Texas: An emerging frontier: An oil-rich unconventional resource," <u>Search and Discovery Article #10411 (2012)</u>. **AAPG©2012 Serial rights given by author. For all other rights contact author directly.

¹Eagle Oil & Gas, Co., Dallas, Texas (<u>Bill.Fairhurst@eagleog.com</u>)

Abstract

The WolfBone play is an emerging unconventional oil resource. Exploration and development have been a systematic evolution from geologic concept to drilling, evaluation, and revision of targets. Originally, Wolfcamp sandstone reservoirs below and Third Bone Spring sandstone reservoirs above the Wolfcampian shale source section were targeted. Current drilling and production are focused on the 1000-ft-thick, oil-rich, unconventional Wolfcamp shale.

The Wolfcamp is an ideal heterogenetic resource consisting of quartz, carbonate, and kerogen. Exploration and field development will be successful over a large area. However, the geologic and economic sweet spot is limited to the basin floor. In this setting quartz and kerogen accumulated in the quiet deep basin interrupted by episodic deposition of shelf to basin-floor carbonate debris flows that settled basinward of the deceleration boundary. These depositional processes resulted in compositional and grain-size heterogeneities and accumulation of the thick organic-rich targets.

During maturation large volumes of oil were sealed in place (108 MMBOIP per section). Expansion from kerogen to oil in a sealed system resulted in overpressure and abundant fracturing that has resulted in enhanced productivity. Individual wells have flowed 45 MBO from 11,000 ft prior to initiating artificial lift, which is atypical of Permian Basin reservoirs. Farther into the basin and upslope these conditions do not exist and are outside the economic sweet spot. Basinward, the unit is consistently thick; however, there is more shale, and the section is starved of siltstones and carbonates. Upslope, the unit thins and is more gas-prone. In these slope environments the mixture of coarser-grained shelf carbonates and sandstones breached the system, providing migration pathways which have limited productivity and lower ultimate economic recoveries.

Since 2009, this play has been developed with vertical wells comingling the oil resource with conventional reservoirs. Interpretation of imaging logs has identified the primary fracture orientation and zones with conjugate fractures systems. Integration with production logs has optimized horizontal target identification, and horizontal drilling has begun. The Leonardian Avalon sweet spots occur at similar depositional setting as the Wolfcampian resource and the same geographic position in this portion of the basin. The Avalon is estimated to have 103 MMBOIP per section.

References

Fitchen, W.M., 1997, Carbonate sequence stratigraphy and its application to hydrocarbon exploration and reservoir development, *in* I. Palaz, and K.J. Marfurt (eds.), Carbonate Seismology: SEG Geophysical Development Series, no. 6, p. 121-178.

Wright, W.F., 1962, Abo reef: prime West Texas target, Parts 1 and 2: Oil and Gas Journal, Part 1, v. 60/31, p. 226-235, Part 2, v. 60/32, p. 188-194.

Fairhurst, Bill; Hanson, Mary Lisbeth; Reid, Frank; and Pieracacos, Nick

WolfBone Play Evolution, Southern Delaware Basin: Geologic Concept Modifications That Have <u>Enhanced Economic Success</u>

© Eagle Oil & Gas, Co., 2012

TUDORPICKERING

HOLT & CO ENERGY INVESTMENT &

2

Bill Fairhurst, Mary Lisbeth Hanson, Frank Reid, and Nick Pieracacos Eagle Oil & Gas, Co., Dallas, Texas 5950 Berkshire Lane, Suite 1100 Dallas, Texas 75225 214/323-4515 832/928-5303

The WolfBone play is an emerging unconventional oil resource. Exploration and development have been a systematic evolution from geologic concept to drilling, evaluation, and revision of targets. Originally, Wolfcamp sandstone reservoirs below and Third Bone Spring sandstone reservoirs above the Wolfcampian shale source section were targeted. Current drilling and production are focused on the 1000-ft-thick, oil-rich, unconventional Wolfcamp shale.

The Wolfcamp is an ideal heterogenetic resource consisting of quartz, carbonate, and kerogen. Exploration and field development will be successful over a large area. However, the geologic and economic sweet spot is limited to the basin floor. In this setting quartz and kerogen accumulated in the quiet deep basin interrupted by episodic deposition of shelf to basin-floor carbonate debris flows that settled basinward of the deceleration boundary. These depositional processes resulted in compositional and grain-size heterogeneities and accumulation of the thick organic-rich targets.

During maturation large volumes of oil were sealed in place (108 MMBOIP per section). Expansion from kerogen to oil in a sealed system resulted in overpressure and abundant fracturing that has resulted in enhanced productivity. Individual wells have flowed 45 MBO from 11,000 ft prior to initiating artificial lift, which is atypical of Permian Basin reservoirs. Farther into the basin and upslope these conditions do not exist and are outside the economic sweet spot. Basinward, the unit is consistently thick; however, there is more shale, and the section is starved of siltstones and carbonates. Upslope, the unit thins and is more gas-prone. In these slope environments the mixture of coarser-grained shelf carbonates and sandstones breached the system, providing migration pathways which have limited productivity and lower ultimate economic recoveries.

Since 2009, this play has been developed with vertical wells comingling the oil resource with conventional reservoirs. Interpretation of imaging logs has identified the primary fracture orientation and zones with conjugate fractures systems. Integration with production logs has optimized horizontal target identification, and horizontal drilling has begun. The Leonardian Avalon sweet spots occur at similar depositional setting as the Wolfcampian resource and the same geographic position in this portion of the basin. The Avalon is estimated to have 103 MMBOIP per section.

Overview - Location

□ <u>Most active US basin with 433 rigs (Delaware Basin:</u> 214), Hz Rigs: ~35%⁽¹⁾

- □ Total Resource in place per section: 108 Mmboe
 - Horizontal Development:
 - Alternative Wolfcamp development strategy modeled
 - 3rd Bone Spring development
- Upside Potential
 - Horizontal resource in Avalon Shale
 - Avalon Shale 105 MMboe in place per section
 - Delaware Sands ongoing vertical & horizontal exploitation
 - Vertical drilling targeting deeper gas zones

Production from the Permian System

Summary

- Permian system comprised of multiple basins:
 - Delaware Basin
 - Central Basin Platform
 - Midland Basin
- Development progression:
 - Early production from shallow formations on the basin edges
 - <u>Transition to deeper deposits in the central Delaware (Avalon,</u> <u>Bone Spring, & Wolfcamp)</u>
- Recent basin revitalization:
 - <u>Comingled vertical completions</u>
 - Modern horizontal drilling and completion technologies

Permian Basin Cross Section

Permian Basin Structure

© Eagle Oil & Gas, Co., 2012

Source: Center for Energy & Economic Diversification UTPB, Geology of National Parks, National Park Service US Dept of the Interior, Society for Sedimentary Geology, Sandridge IR presentation.

Delaware Basin Deposition

- 2 depositional systems in place
 - Deep submarine channels running off the NW Shelf and Central Basin Platform
 - Periods of influx of carbonate debris
- 3rd process in generation of organics in the photic zone across the entire basin as debris settled
 - D Mostly organics settling in the deep basin; carbonates mainly deposited on the Shelf and on the Slope

Source: Center for Energy & Economic Diversification UTPB, Geology of National Parks, National Park Service US Dept of the Interior, Society for Sedimentary Geology.

Wolfbone Industry Activity

Source: HPDI and Eagle data. Producing wells.

	SERIES	DELAWARE BASIN FORMATION		PERIOD	SERIES		MIDLAND
PERIOD							BASIN
							FORMATION
GUADALUPE	DELAWARE GROUP	LAMAR BELL CANYON		GUADALUPE	WHITE- HORSE	_	TANSILL YATES
		CHERRY CANYON					7 RIVERS QUEEN
							GRAYBURG
		BRUSHY CANYON			WARD		SAN ANDRES
							SAN ANGELO
LEONARD	1ST BONE SPRING		UPPER AVALON SH. LOWER AVALON SH.	ONARD	CLEAR FORK		UPPER LEONARD
			1ST BONE SPRING SD			UPPER SPRABERRY	
	2ND BONE SPRING			LE(LOWER SPRABERRY		
	3RD BONE SPRING				DEAN		
WOLF-	WOLFCAMP			WOLF-			
CAAP- EAGLE OIL & GAS CO				CAMP	© Eagle Oil & Gas, Co., 2012		
							-

Bone Spring Type Log Section

Hz Bone Spring IP Bubble Map

EAGLE OIL & GAS CO.

Wells completed as Wolfbone producers after 1/1/2009 - Hoban, Wolfbone fields

5/84

GETTY OIL CO. UNIVERSITY "44-20" #1 1220" FNL & 1320" FWL SEC 44. BLK 20. UNIVERSITY LANDS SURVEY WARD COUNTY, TEXAS ELEV 2801" TO 20.155"

BROWNING OIL COMPANY INC. UNIVERSITY "18-42" #1 1320' FNL & 1320' FEL SEC 42, BLK 18, UNIVERSITY LANDS SURVEY WARD COUNTY, TEXAS ELEV 2515' TD 11.850'

C & K PETROLEUM INC. MEEKER "45" #1 1320' FNL & 1320' FWL SEC 45, BLK 6, HEGN SURVEY REEVES COUNTY TEXAS ELEV 2562 TD 20,246'

Hz Bone Spring IP Bubble Map

EAGLE OIL & GAS CO.

Wells completed as Wolfbone producers after 1/1/2009 - Hoban, Wolfbone fields.

Bone Spring Type Log Section

Plugging Water-Bearing Zones Improves Profits

Pistola #1 Case History

- Eagle's 2nd Wolfbone completion
- Well initially flowed >1,000 bblw/d
- Leveled out ~150 bblw/d
- Re-entered wellbore and cement squeezed Middle Wolfcamp Sands C&D
- Re-completed Middle and Upper Wolfcamp shales and 3rd Bone Spring Sands
- Well IP'd > 450 bopd following intervention

City of Pecos 15 #1 Case History

- Ealge's 6th Wolfbone completion
- Well initially flowed >1,200 bblw/d
- Decreased to ~600 bblw/d over 30 days
- Re-entered wellbore and cement squeezed Middle Wolfcamp Sands C
- Re-completed Middle and Upper Wolfcamp shales and 3rd Bone Spring Sands
- WOR cut in half to ~1.5 from 3+ vastly improving economics

Pistola #1 Production History

City of Pecos 15 #1 Production History

HOLT & CO ENERGY INVESTMENT &

Production Logs = Precision Completions

Production Logs Used to Identify Target Intervals

Relative Flow Contribution by Member⁽¹⁾

Focusing the Effort

Most recent wells completed consistently with excellent results

IP's Trending Upward as Completions Improve

North Wells

South Wells

NOTE: Eagle operated Wolfbone completions.

Honoring Recent Data

RIVERFORD EXPLORATION, LLC WOLFBONE WELLS RATE:TIME

© Riverford Exploration, LLC, 2012

© Riverford Exploration, LLC, 2012

TUDORPICKERING HOLT & CO | ENERGY INVESTMENT & MERCHANT BANKING

© Riverford Exploration, LLC, 2012

TUDORPICKERING HOLT & CO | ENERGY INVESTMENT & MERCHANT BANKING

* Courtesy of Riverford Exploration, LLC

MONROE 28 #1 ("HIGH-SIDE WELL) RATE : CUM (BO)

CUMULATIVE SALES VOLUMES

© Riverford Exploration, LLC, 2012

Wolfcamp - The Source of the Delaware's Success

Wolfcamp Geologic Characterization

- Ideal mineralogy and grain-size distribution to behave as both a source rock and a reservoir
- 108 MMboe in-place per square mile
- Approximately 1,000' thick
 - □ 2-5% TOC
 - □ 50-90% quartz & carbonate, 10% clay
- 0.7 psi/ft pressure gradient
 - □ From in-situ hydrocarbon generation & storage
 - Higher production rates
 - □ Shallower declines
- Carbonate debris flows were the primary target
 - Conventional Wolfcamp production
- Industry now targeting the source rock
 - Modern D&C techniques

© Eagle Oil & Gas, Co., 2012

Wolfberry vs. Wolfbone

Wolfbone has Superior Reservoir Properties

- Depth and Pressure → Greater Reservoir Energy
 - Wolfbone is highly overpressured (~ 0.7 psi/ft)
 - □ Wolfbone is ~ 2,000' deeper
 - Wolfbone up to 2x Wolfberry pressure
- Thicker vertical section leads to additional upside
 - Both completed over 1,250' interval
 - Wolfbone has 2,000' additional potential
- Substantial upside in the Delaware Basin
 - Uphole potential in Delaware Sands
 - Hz develoment

Map source: HPDI. Wolfberry wells drilled since 1/1/2010

Wolfbone... the Delaware's Wolfberry... only Better

Industry Bringing Midland Basin Technology to the Delaware

- Industry has increased Wolfberry EUR over time by comingling more zones
 - Activity significantly increased with improved results (now > 700 wells/year)
- Deeper, overpressured Delaware yielding superior Wolfbone EUR vs. Wolfberry
- Wolfbone wells flow 3-6 months before pump (20+ Mbo)

Chart adapted from Pioneer Natural Resources.

Approximate yearly average.

(1)

(2)

FAGLE OIL & GAS CO

Wolfberry Evolution Through Technology⁽¹⁾

Wolfbone Type Curve (vs. Wolfberry)

AGLE OIL & GAS CO

Wolfbone 30-Day IP Bubble Map

Fairhurst, Bill; Hanson, Mary Lisbeth; Reid, Frank; and Pieracacos, Nick

* Courtesy of Carrollton Minerals Partners

place per sq. mile

HOLT & CO | ENERGY INVESTMENT & MERCHANT BANKING

Going Sideways to Get Ahead

Horizontals in the Delaware

- Operators have been developing the 3rd Bone Spring with horizontal wells
 - Capture more acreage than vertical wells
 - More stimulated rock volume leads to higher rates
 - Larger drainage area leads to greater ultimate recovery
- Thick sections perfect for horizontal development
 - □ 2+ laterals per unit (Bone Spring, Wolfcamp, Avalon)
 - More laterals increase recovery factor per section

Horizontal Wells consistently Outperform Vertical

• Vertical to Horizontal EUR factor:

Play
Bakken
Eagle Ford
Granite Wash
Miss Lime
Niobrara
Wolfcamp (Midland)
Wolfcamp (Delaware)

Vertical vs. Horizontal Drainage Area

Fairhurst, Bill; Hanson, Mary Lisbeth; Reid, Frank; and Pieracacos, Nick

Bone Spring

Bone Spring Depositional Area

The Bone Spring package exists across much of the Delaware Basin though different members are more prevalent in specific areas

Avalon Shale

Avalon Shale Depositional Area

The Avalon Shale is present throughout the Delaware basin and is currently being pursued as an unconventional play in the Northern half

What is the Avalon Shale?

The Avalon Shale is the stratigraphic interval between the top of the Bone Spring Formation & the 1st Bone Spring Sand

THE PARTY

Basin Geology

- Bounded by carbonate shelves & platforms
 - North: Northwest Shelf
 - East: Central Basin Platform
 - South: Marathon Fold Belt
 - West: Diablo Platform
- Bone Spring stratigraphy varies across the Delaware Basin
 - NW Shelf: predominantly carbonate
 - Slope: 1st/2nd/3rd sandstones developing in the lower part of the interval
- Deep Basin \rightarrow Avalon Shale
 - "Shale" development within the upper 1st Carbonate section
 - Organic-rich siltstone and carbonate debris flow
 - Unconventional, continuous accumulation
 - 900 1,000' gross thickness

Avalon Shale Net Isopach

Summary

- Map Parameters
 - □ Ft > 12% Density Porosity
 - □ GR > 75 Units
 - Resistivity > 20 ohm-m
 - From 600 data points
- Isopach is concentric from basin edges
- Porosity thick coincides with Bone Spring thick above basin low
- Primarily Pelagic deposition

Structure

- Regional Structure dips east at 100' per mile
- 6,000' deep in W. Eddy to 10,000' deep in Lea County
- Lea County has more structural nosing and dip reversals than Eddy
- Axial low of basin trends N-S through Lea and Loving Counties
- GOR varies with depth with oily production in deeper basin

© Eagle Oil & Gas, Co., 2012

Source: Net isopach map and summary bullets from John Worrall (Geologist and Partner, Bold Energy II, LLC and Manzano Energy Partners), and Chad Kronkosky (Reservoir Engineer, Bold Energy II, LLC).

Eagle Avalon Shale Isopach

105 MMboe in-place per square mile across Eagle position

Texas Avalon / Bone Spring Production Increasing

Production growth expected to continue recent momentum given industry focus on liquids and public statements from operators

TUDORPICKERING

HOLT&CO ENERGY INVESTMENT &

EAGLE OIL & GAS CO.

Source: HPDI. Includes vertical and horizontal wells with a target reservoir of Bone Spring or Avalon (HPDI does not currently distinguish between the zones) in the following counties: Reeves, Loving, Ward, Pecos, Winkler

Fairhurst, Bill; Hanson, Mary Lisbeth; Reid, Frank; and Pieracacos, Nick

The Permian is the Premier US Oil Basin

Multi-Zone Vertical and Hz Development Potential

- Wolfbone
 - <u>Commingled vertical</u> wells that capture oil-rich 3rd Bone Spring and Wolfcamp over a <u>1,250' interval</u>
 - <u>Overpressured analog</u> to Wolfberry in the Midland Basin
 - <u>*High-liquid content*</u> provides superior economics
 - 108 MMboe in-place per square mile
- Wolfcamp
 - Horizontal drilling has begun in TX and Eddy, NM
 - Thick interval provides multi-lateral potential
- <u>3rd Bone Spring</u>
 - Substantial nearby horizontal drilling
- Avalon Shale
 - Up to 1,000' gross thickness across the basin
 - Laterally extensive & continuous across Reeves, Co.
 - 105 MMboe in-place per square mile
- Delaware Sands (Brushy, Cherry, and Bell Canyon)
 - Vertical & horizontal exploitation of the 3,000 3,500' thick interval with dozens of potential pays

Eagle Development is Proving Many Zones

- Eagle currently produces 1,888 boe/d from 28 wells
 - 24 vertical wells commingling production across 3rd
 Bone Spring members and Upper Wolfcamp members
 - □ 4 horizontal wells drilled into the 3rd Bone Spring Sands
- Eagle is currently drilling their first horizontal Wolfcamp well in the Upper Wolfcamp Shale B member
 - Excellent results to date with >100' flares during drilling with 12.6 ppg mud
 - Over 100 bbl oil returned to pit while drilling lateral

Fairhurst, Bill; Hanson, Mary Lisbeth; Reid, Frank; and Pieracacos, Nick

Eagle Well Locations

Recent Nearby Industry Results

EAGLE OIL & GAS CO.

Source: HPDI, Corporate IR Presentations.

© Eagle Oil & Gas, Co., 2012

HOLT&CO ENERGY INVESTMENT & MERCHANT BANKING

Eagle Wolfbone Activity

Eagle Operated Wolfbone Production

Wolfbone Drilling Curves

				Spud-to-	Spud-to-
	Well	Spud	TVD (ft)	TD	RR
-	Sheldon #1	12/28/2009	12,685	37	39
-	Pistola #1	2/15/2010	12,602	36	38
-	Bell #2	4/10/2010	11,800	35	39
-	Bell #1	4/12/2010	12,674	33	35
-	Balamorhea Ranch	6/18/2010	12,500	31	34
-	Capps #1	8/4/2010	12,084	30	33
-	City of Pecos 15 #1	9/17/2010	12,206	25	27
—	Monroe 28 #1	10/21/2010	12,250	27	31
-	Pecos Bill 203 #1	12/30/2010	11,690	23	26
-	Monroe 39 #1	1/30/2011	11,601	27	31
	Capps #2	3/7/2011	11,405	29	32

				Spud-to-	Spud-to-
	Well	Spud	TVD (ft)	TD	RR
	Wyatt Earp #1	3/7/2011	11,582	30	34
-	Culley 27 #1	3/18/2011	12,655	39	42
-	Bell #3	3/19/2011	11,407	25	27
-	Doc Holliday 34 #1	4/3/2011	11,600	25	34
-	Leslie 11 #1	4/30/2011	12,700	37	39
	City of Pecos 16 #1	5/4/2011	11,419	22	28
-	Billy the Kid 31 #1	6/10/2011	11,650	36	42
-	Bell #4	7/17/2011	9,055	46	46
-	Monroe 39 #2H	7/30/2011	10,753	33	33
	Planned Vt		11,500	31	36
	Planned Hz		15,500	45	48

Vertical Development Plan Rapidly Proves Acreage

Drilling a single vertical well allows an operator to book the		27	28	29	30	31	32	33	34	35	1	Proved Developed Producing
following:		26	1	2	3	4	5	6	7	36	8	Proved Undeveloped
□ 8 PUD		25	24	1	2	3	4	5	8	37	16	Probable
 16 Probable 56 Possible 		56	23	16	1	2	3	6	9	38	56	Possible
80 total 3P locations Using a "fence post" development technique allows an operator to quickly prove an entire field		55	22	15	8	Well	4	7	10	39		_
		54	21	14	7	6	5	8	11	40	40 A	c
		53	20	13	12	11	10	9	12	41		
		52	19	18	17	16	15	14	13	42		
		51	50	49	48	47	46	45	44	43		

Eagle has already proven a large portion of their acreage \rightarrow Only 11 wells required to convert 100% of locations to ^{3P}

© Eagle Oil & Gas, Co., 2012

TUDORPICKERING HOLT & CO | ENERGY INVESTMENT & MERCHANT BRANKING

40-Acre Spacing Works in the Wolfbone

Focused Fracture - Capps 214 #1 Case Study

- Bell 213 #1 completed as a "typical" sandstone
 - Unconcentrated frac targeted sand intervals
 - Wolfcamp Upper and Middle A Shales
 - 3rd Bone Spring Sand
 - Not completed in Wolfcamp Upper B Shale
 - Wolfcamp C & D Sands produced excessive water and were plugged
- Capps 214 #1 was completed with a more focused "shale frac"
 - Upper and Middle Wolfcamp Shale
 - Wolfcamp A & B Sand
 - 3rd Bone Spring Sand
 - >2x Bell 213 #1 peak production rate

Same Area - Completely Different Results

40-Acre Spacing Works in the Wolfbone

Wolfbone 40-acre Case Study (Bell Lease)

- Bell 213 1, "A" 2, and "A" 3 drilled ~6 months apart
 - 213 1: June 29, 2010
 - 213 "A" 2: Jan 13, 2011
 - □ 213 "A" 3: May 21, 2011
- No observed interference during completion or production
- Decline rate unaffected by offsetting production
- <u>40-acre spacing is norm in the Wolfberry (analog)</u>
 - <u>20-acre development underway in many areas</u>

Wolfbone Down-Spacing Potential (Recovery Factor)

■ Oil-in-Place per sq mile = 108 MMboe

		Well Spacing (acres)						
		40	20	10				
Vell e)	200	3.0%	5.9 %	11.9%				
EUR/Well (Mboe)	225	3.3%	6.7%	13.3%				
EU (/	250	3.7%	7.4%	14.8%				

Bell Lease (Southern Area of Eagle Position)

SEC Rules Favor Horizontal Well Development

- Drilling a single horizontal well allows an operator to book the following:
 - 1 PDP (4 x 40 Ac)
 - 4 PUD (16 x 40 Ac)
 - 8 Probable (32 x 40 Ac)
 - 28 Possible (112 x 40 Ac)

40 total Hz 3P locations

- Horizontal wells are being used to prove fields quickly in North Dakota using the "fence post" development plan
- 2009 SEC booking guideline changes made proving reserves with horizontal wells more favorable to operators
- Old method: Only direct lateral offsets
- New method: Includes toe+ heel offsets

			1-4	5-12	<mark>12-16</mark>			
		21	17	1	109	105		
		22	18	2	110	106		
		23	19	3	111	107		
		24	20	4	112	108		
	29	25	5	1	21	101	97	
	30	26	6	2	22	102	98	
	31	27	7	3	23	103	99	
	32	28	8	4	24	104	100	
37	33	9	1	1	2	25	89	93
38	34	10	3	2	4	26	90	94
39	35	11	5	3	6	27	91	95
40	36	12	7	4	8	28	92	96
	41	45	13	1	29	81	85	
	42	46	14	2	30	82	86	
	43	47	15	3	31	83	87	
	44	48	16	4	32	84	88	
		49	53	17	73	77		
		50	54	18	74	78		
		51	55	19	75	79		
		52	56	20	76	80		
			<mark>57-60</mark>	<mark>61-68</mark>	69-72			
								-

4	Proved Developed Producing
16	Proved Undeveloped
32	Probable
112	Possible

40 A c

Eagle is currently completing their first Wolfcamp Shale horizontal well

Bone Spring Industry Activity

EAGLE OIL & GAS CO

Hz Bone Spring IP Rate

EAGLE OIL & GAS CO.

Fairhurst, Bill; Hanson, Mary Lisbeth; Reid, Frank; and Pieracacos, Nick