Reinterpretation of the “J” Basalt Reflector from Seismic Data Reprocessing Across the Coastal Plain of Southeastern Georgia: Potential Implications for Long-Term CO₂ Sequestration*

Olusoga Martins Akintunde¹, Camelia Knapp², James H. Knapp², David M. Heffner², and John Shafer³

Search and Discovery Article #80174 (2011)
Posted July 31, 2011

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Houston, Texas, USA, April 10-13, 2011

¹Earth and Ocean Sciences, University of South Carolina, Columbia, SC (oulosogamartins@gmail.com)
²Earth and Ocean Sciences, University of South Carolina, Columbia, SC
³Earth Sciences and Resources Institute, University of South Carolina, Columbia, SC

Abstract

We present new results focused on the regional significance of the Jurassic basalt (“J” basalt) within the Late Triassic South Georgia Rift (SGR) basin and its potential as a seal for CO₂ storage. The SGR basin which covers parts of Georgia, western Florida, southern Alabama and southern South Carolina, contains Triassic rocks that are deep enough to be classified as saline formations and are close to CO₂ emission sources, making them promising for geologic CO₂ sequestration.

The objective of this work is to identify and interpret subsurface reservoirs and seals as part of a basin-scale geological assessment for potential CO₂ storage. Contrary to the paradigm that the “J” basalt is present beneath the Cretaceous sediments in southeastern Georgia and parts of the (SGR) basin, our seismic imaging results corroborated by interpretation from nearby Georgia well data provide evidence to suggest that no pre-Cretaceous rocks are above the SGR in southeastern Georgia.

This new seismic imaging involved reprocessing of 96-channel, 6s and 24 fold seismic reflection data (SEISData6) covering the Coastal Plain of southeastern Georgia. Reprocessing was enhanced by the use of residual statics in addition to the attempt to boost signal to eliminate the background noise. Of primary importance to our interpretation is the presence of a conspicuous, southeast-dipping reflector with seismic characteristics similar to those previously described as the “J” reflector. However, our interpretation and subsequent correlation with a nearby Georgia well log indicates that this high-amplitude and fairly continuous reflector corresponds to the base of the Coastal Plain sediments and the transition to the underlying Triassic sediments. The “J” basalt, widely recognized in the 1980’s as a distinct and prominent geologic marker that is either below or at the base of the Coastal Plain, does not appear to be present in the study area. Absence implies either a restricted spatial distribution of the “J” basalt or uplift and erosion, possibly
associated with fault reactivation. Our results further underscore the need for improved understanding of the geographical extent of the “J” basalt throughout the SGR basin. We conclude that the absence of the “J” basalt reflector from the study area does not preclude subsurface storage of CO₂. Substantial evidence abounds for the occurrence of diabase and shale that could serve as effective seals for potential CO₂ storage within the SGR basin.

References

Reinterpretation of the “J” Basalt Reflector from Seismic Data Reprocessing across the Coastal Plain of Southeastern Georgia: Potential Implications for Long-term CO$_2$ Sequestration

Olusoga Martins Akintunde, Camelia Knapp, David Heffner, James Knapp & John Shafer, University of South Carolina
Outline

• Introduction
• Motivation
• Objectives
• Methods of Study
• Results and Interpretations
• Conclusions
Introduction

• “J” Basalt Reflector of early middle Jurassic (~ 184 Ma) - Lanphere, 1983
• It originated from Schilt et al 1983
 – based on correlations with the Clubhouse Crossroads basalt flows in South Carolina
• Interpreted as a laterally continuous, high-amplitude reflection (Hamilton et al. 1983)
• Associated with igneous activity during formation of South Georgia Rift basin
Schematic Cross section of the South Georgia Rift

Jurassic/Triassic formations are buried beneath the Coastal Plain.

South Georgia Rift Basin

S₄, S₆ & S₈ are regional 2D seismic lines

Areal extent of SGR by Heffner and Knapp 2011
- Dorchester 211 well
- Clubhouse crossroad wells
- Norris Lightsey well
- Triassic wells
- Known CO₂ sources

S₆ Coastal Plain Profile
Motivation

• Strategic importance of SEISDATA6 Coastal Plain profile
 – Previous work done in relation to 1886 Charleston earthquake (Behrendt, 1986)
 – Covers Triassic basin sediments that are targets for CO₂ site characterization study
 – Falls within area postulated to be covered by “J” reflector
Motivation

Study area (in blue circle) falls within postulated areal coverage of “J” reflector (McBride et al 1989)
Motivation

• Lateral extent of the ‘J’ reflector still remains unknown
• Knowing whether or not the ‘J’ reflector extends to the study area is key to evaluating its regional significance to serve as a CO$_2$ reservoir seal
Objectives

• Identify and Interpret subsurface reflectors to delineate
 – Coastal plain
 – Underlying Triassic/Jurassic sediments
• Evaluate regional significance of the ‘J’ basalt
• Implication for CO$_2$ sequestration
Methods of Study

1. Adaptive seismic imaging of S_6 Coastal Plain profile
2. Interpretation of depth-converted seismic section
3. Analysis of well logs to substantiate interpretations
4. Construct a geologic model of the study area
AB is a NW-SE dipping reflector had previously been interpreted as the “J” horizon (McBride et al. 1989 and Behrendt, 1986)
Location of Nearby GA Well

- S8
- S6
- S4

Areal Extent of SGR (Heffner & Knapp 2011)

- S4, S6 & S8 - regional 2D seismic lines
- Nearby Georgia well 885
- Norris Lightsey well
- Clubhouse Crossroads wells
- Dorchester 211 well
- Triassic wells
- CO2 sources

Georgia, Piedmont, Coastal Plain, Fall Line, Tennessee, North Carolina, South Carolina, Florida, Alabama

Map showing locations of nearby wells and geological features.
Analysis of Nearby Georgia Well

Coastal plain sediments mostly sand with some gravel and limestone

Triassic sediment

No ‘J’ basalt
Summary of Information from Other Georgia Wells

<table>
<thead>
<tr>
<th>Wells</th>
<th>Distance from S_6 Profile</th>
<th>Total Depth (m)</th>
<th>Key Observations</th>
<th>Evidence of Triassic unconformity</th>
<th>Evidence of mafic igneous rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA 3353</td>
<td>12 miles from CDP 9569 – CDP 9627</td>
<td>1,162</td>
<td>Red beds mixed with basic intrusive at 368 m</td>
<td>Yes at 359 m</td>
<td>Yes, but very, very thin layer at 368 m</td>
</tr>
<tr>
<td>GA 3441</td>
<td>25 miles from CDP 8121 – CDP 8312</td>
<td>1,723</td>
<td>Penetrated mostly sedimentary rocks</td>
<td>Yes at 335 m</td>
<td>Yes, but very, very thin layer at 1,707 m</td>
</tr>
<tr>
<td>GA 3447</td>
<td>27 miles from CDP 8298 – CDP 8393</td>
<td>2,867</td>
<td>Metamorphic rock from 2538 m to 2867 m (Schist and Quartzite)</td>
<td>Yes at 337 m</td>
<td>No</td>
</tr>
</tbody>
</table>
Base of Coastal Plain is a:
1. Southeast ward thickening wedge of poorly consolidated sediments
2. Sub-Cretaceous unconformity above Triassic sediments and/or metamorphic rock (Snipes et al 1993)
‘J’ Reflector Re-Interpreted

• No ‘J’ Reflector in the study area
• Observed topmost reflector coincides with the base of Coastal Plain
• Results corroborated by well data
• Geologic model consistent with known geology of buried Triassic basin (Marine, 1974)
How Significant is ‘J’ Reflector?

• Geographical extent throughout SGR
• Ability to serve as a regional seal for CO$_2$ storage
• Recognition as a distinct geologic marker in the last 25 years
• Understanding regional tectonics
How Significant is ‘J’ Reflector?

Blue circle: Onshore geographical area covered by ‘J’ Reflector

“Areal Extent of SGR (Heffner & Knapp 2011) S₄, S₆ & S₈ - regional 2D seismic lines

Norris Lightsey well
△ Clubhouse Crossroads wells
• Dorchester 211 well
○ Triassic wells
• CO₂ sources
□ Nearby Georgia well 885

“J” is 2700 – 2800 km²
How Significant is the ‘J’ Reflector?

• “J” reflector does not appear in the study area contrary to existing paradigm
• ‘J’ appears to be more areally restrictive than previous interpretations
• Areal extent 2,700 – 2,800 km² (onshore)
Implications for ‘J’ Restriction

• May suggest uplift or erosion possibly associated with fault reactivation
• Need for improved understanding of the lateral extent of the ‘J’ if used as a CO$_2$ reservoir seal
• Absence does not preclude subsurface CO$_2$ storage in the SGR
 – Presence of diabase that can serve as a seal
Norris Lightsey Well

Red beds, mostly sandstone interbedded with siltstones

Diabase sill

Red beds, mostly sandstone interbedded with mudstones and siltstones
Norris Lightsey Well

Red beds, mostly sandstone

Diabase that can serve as a CO$_2$ seal

Red beds, mostly sandstone interbedded with siltstones
Conclusions

- Our new results substantiated by well data have redefined the significance of the “J” Basalt reflector
- The “J” reflector within study area appears to be in fact base of the Coastal Plain
- This is a sub-Cretaceous unconformity that separates poorly consolidated sediments from underlying Triassic sediments
Conclusions

• Our new interpretations suggest absence of “J” Basalt in the study area

• Absence implies
 – More areally restrictive distribution of “J” Basalt in SGR than previous interpretations
 – uplift or erosion possibly associated with fault reactivation

• Absence of “J” Basalt does not preclude subsurface CO$_2$ storage within SGR

• Diabase sills can serve as CO$_2$ seals
Acknowledgements

• Mike Waddell, Adrian Addison, Duke Brantley, Mark Evans, ESRI-SC
• Bill Clendenin, South Carolina State Geological Survey
• This material is based upon work supported by the Department of Energy under Award Number DE-FE0001965
Acknowledgement and Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.