Seismic Reservoir Characterization of the Morrow "A" Sandstone, Postle Field, Texas County, Oklahoma*

Thomas L. Davis¹, Robert D. Benson¹, Scott Wehner², Michael Raines², and Roger Freidline²

Search and Discovery Article #50517 (2011) Posted November 28, 2011

Abstract

Three multicomponent (9-C) seismic surveys were conducted at Postle Field, Oklahoma. Interpretation of the surveys illustrates that the Morrow "A" sandstone can be detected. The sandstone was previously considered acoustically invisible, yet the combination of multicomponent and time-lapse seismic data has enabled us to detect the reservoir, with average thickness of 38 ft (8.5 m) buried beneath a complex overburden at 6,100 ft (1,850m) depth.

Even though the sandstone is thin, it has a greater elastic impedance contrast than acoustic impedance contrast. We have found that shear wave data enables reservoir mapping of at least half the minimum thickness seen on P-wave data. This is because the shear wave reflectivity contrast between the sandstone and adjacent shale is three times that of P-wave, thus enabling higher definition of the thin sandstone reservoir with shear wave data. Dynamic changes introduced by water and carbon dioxide flooding enable further delineation of the sandstones in the shale-dominated interval.

References

Bowen, D.W., and P. Weimer, 2003, Regional sequence stratigraphic setting and reservoir geology of Morrow incised-valley sandstone (Lower Pennsylvanian), eastern Colorado and western Kansas: AAPG Bulletin, v. 87/5, p. 781-815.

Tamimi, N., S. Sherkati, and I.A. Fard, 2009, The Effects of Structural Components on Seismic-Wave Velocity in Incompetent Units, Case Study: Gachsaran Formation (SW Iran): SEG 79th Annual International Meeting Technical Program, Houston, TX, 5 p.

^{*}Adapted from oral presentation at AAPG Mid-Continent Section meeting, Oklahoma City, Oklahoma, October 1-4, 2011

¹Colorado School of Mines (tdavis@mines.edu)

²Whiting Oil and Gas Corporation

Wyllie, P.J., 2008, Magma genesis, plate tectonics, and chemical differentiation of the Earth: Reviews of Geophysics, v. 26/3, p. 370-404.

Zerpa, L.E., A.K. Sum, E.D. Sloan, C.A. Koh, 2011, Generation of Best Practices in Flow Assurance Using a Transient Hydrate Kinetics Model: Offshore Technology Conference Proceedings, Houston, Texas, 7 p.

Seismic Reservoir Characterization of the Morrow A Sandstone

Postle Field, Texas County, Oklahoma

Thomas L. Davis & Robert D. Benson CSM Scott Wehner, Michael D. Raines and Roger Freidline Whiting Oil and Gas Corp

Location of Postle Field

Morrow Stratigraphic Section

Postle Field – Geologic Setting

Pennsylvanian Morrow (~217Ma) paleogeography. Modified from Bowen and Weimer (2003).

Study Location in the Hovey Morrow Unit

Net Pay A Sand

Postle Reservoir Parameters

- Depth
- Producing formation
- Average Thickness
- Porosity
- Permeability
- •Soi
- •Reservoir Temp
- •Reservoir pressure Initial
- •Reservoir Pressure Current
- •Minimum Miscibility Pressure
- Oil Gravity
- Oil FVF orig
- •Oil FVF current
- Well spacing
- Area
- Cumulative Production
- **•**00IP

6100'

Upper Morrow sand

28' (10-70)

17% (10-23)

50 mD (20-500)

70%

140 F

1630 psi

200 - 2300 - 4500 psi

2100 psi

40 API

1.28

1.20

40 Ac (80-Ac 5-spot inj. patterns)

26000 Ac

120 MMBO (40% OOIP)

~300 MMBO

Motivation

Dry holes drilled

Cross Section

Valley – Fill Sandstones

The Morrow Sandstone

Binocular Microscope Image

Dipole Sonic Log – Postle Field

HMU 24-4

The Challenge

Acoustic impedance contrast between Morrow sandstone and shale is small (<10%).

The Morrow A is a thin sandstone reservoir below seismic resolution.

Average ~45 ft.

4-D, 9-C Seismic Survey

Field Survey Layout

4-D, 9-C Seismic Acquisition Parameters

4-D, 9-C (time-lapse) Type survey

Subsurface bin size 55 feet X 55 feet

Number of receiver locations 1920

Number of source locations 1920

Total number of source points 5760

Stationary: 13,200' X 13,200' Type receiver spread

I/O System IV, 2 ms sample rate, Instrumentation

4/5 sec. record length

Single 3-C Digital Sensor Receiver array

(VectorSeis)

Source (P-wave) **Vertical vibrator: 6-100 hz linear**

sweep, 8 sec duration, 4 sweeps

Source (S-wave) Horizontal vibrator: 4-60 hz linear

sweep, 8 sec duration, 4 sweeps,

one source oriented N-S,

Special Thanks to Paragon one source oriented E-W

Postle Seismic Survey

P Stack

S11 Stack

VSP Well Tie

P-Wave Corridor STK March 08 in Inline 45

S-Wave Corridor STK March 08 in Inline 45

P-Wave Max Peak Amplitude

Pmig4
Band Pass 30,35
Morrow Peak 20 ms Center
Correlation: 0.42

S -Impedance

Correlation Coeff .65

- WAG imjectors
- water injectors
- blogneers

Seismic guided Morrow A Sandstone

Multicomponent guided Isopach

.73 CC

From Pinto 2011

4000 ft

How connected are we?

S11 1ST monitor to baseline

From Zerpa, 2011

Production History & Field Revitalization

Hovey Morrow Unit

Conclusions

 The Morrow A Sandstone Reservoir is better imaged with shear waves

•Reservoir conformance mapping with shear waves provides the insight to change or adjust the current injection-production pattern to improve CO2 conformance

RCP Sponsors

TOTAL

