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Abstract

The large-scale effects of tidal waves entering the Cretaceous Western Interior Seaway from the Gulf of Mexico have previously been
modeled, but the field evidence for tidal processes in the Cretaceous successions has never been assembled. Field data from the southwestern
reaches of the seaway in Utah, Colorado, and Wyoming indicate that tidal influence was prominent along the Campanian coastlines in two
stratigraphic settings: (1) tidal currents strongly influenced or dominated the distal regressive segments of many deltaic cycles (sites where
low relative sea level caused the seaway to narrow and possibly be restricted to the north), in contrast to the storm wave-dominated facies of
proximal reaches (sea-level highstand sites) of the same deltaic transects; (2) tidal influence was relatively strong during the transgressive
development of many shorelines, at most sites across 100-km-wide transgressive tracts; thin transgressive veneers as well as thicker estuarine
deposits (some in valleys, some not) are documented. Tidal effects in the second setting are well known and may be due to increased tidal
prism as sea level rose across a landward-shallowing shelf or because the increase of shelf width with sea-level rise brought the system closer
to tidal resonance. In the regressive setting the common cross-shelf trend from wave-dominated to tide-dominated shorelines may possibly
have resulted from tidal amplification as the seaway narrowed or became partially restricted to the north during relative lowstand periods. In
addition, there was a remarkable increase in tidal influence along all of the 77.5-75-Ma shorelines, not restricted to lowstand positions. These
generally more embayed shorelines in this period are likely due to irregular but widespread shallowing around embryonic, subaqueous
basement-involved topography, as the seascape adjusted to a slight basinward tilt (as opposed to the earlier back-tilt of the foreland basin) and
a much more irregular, shallow bathymetry during the Sevier-Laramide transition.
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TIDAL DEPOSITS OF THE CAMPANIAN WESTERN
INTERIOR SEAWAY, WYOMING, UTAH &
COLORADO

Ron Steel, University of Texas at Austin
Piret Plink-Bjorklund & Jennifer Aschoff, Colorado School of Mines

1 1. Tideless Epeiric Seas (Shaw, 1964)
\ 2. Mid-60s, recognition of tidal signals
v (Weimar, 1966; Masters, 1966, &

| agreed importance of tides in shelf seas
(Klein & Ryer, 1978)

3. Key papers documenting
transgressive estuaries (Rahmani,1988;
Cross, 1988; Devine, 1991; Van
Wagoner, 1991) at tops of regressive
cycles




TIDAL RESEARCH IN
WESTERN INTERIOR SEAWAY (USA)

Key Themes impacting tidal research from early 90s

1. Shannon Sst (Suter & Clifton, 1999) & Sego Sst (Willis &
Gabel, 2001) debates: incised valleys, lowstand shorelines or
estuaries

2. Tidal deposits important for correlation from shorelines back
into non-marine strata (Shanley et al., 1992), within clastic
wedges.

3. Haystack Mts Fm study showed that the most basinward
shorelines were strongly tide-influenced (Mellere & Steel,
1995, 2000; Hampson, 2010)




MODELING OF THE WIS

Tides entering the epeiric WIS did not propagate far; rapid
attenuation of tidal-wave energy (Keulegan & Krumbein, 1949)

Resonance of tides at certain shelf widths (Klein & Ryer, 1978)

Today there is agreement that tides can be locally very important
even in large microtidal sea, due to funneling, resonance, Coriolis
acceleration & amphidromic circulation

Modeling of storm and tidal conditions in entire seaway (Ericksen &
Slingerland, 1996)

Normal surface circulation in WIS was a counterclockwise gyre;
added storms produced enhanced southward-directed currents
along western shorelines (Slingerland et al., 1990; Slingerland &
Keen, 1999)




Modeling successfully reproduced the storm-wave-
dominated highstand shorelines along west side of seaway,
and counter-clockwise current gyre, but not the tide-
influenced shorelines in basin center




Thickly stacked tidal dunes.
Delta front: Seminoe Sst.

Courtesy S. Ahmed



Compound dunes with internal bi-directional
dunes, Hatfield Sandstone, S. Wy.




Large compound
dunes Hygiene Sst,
Denver Basin




SEGO TIDAL ESTUARIES & DELTAS

Maximum
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Willis & Gabel, 2001
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Sego/Corcoran/Cozette: mixed wave-tide shorelines
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In a landward direction tidal influence seen in..........

4 BAYHEAD DELTAS, NESLEN FM
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TIDAL & BRACKISH WATER SIGNALS IN BOTH ERICSON AND
CASTLEGATE SANDSTONES

Even in coastal plains there is evidence of
rhythmic tidal bedding & brackish traces

Brackish coastal plain

Alluvial plain

TRAIL MB OF ERICSON FM




THREE CAMPANIAN SETTINGS W/STRONG TIDAL INFLUENCE:
1. Distal shoreline sands (lowstand) on wedge fringe

2. Transgressive tracts on most high-frequency sequences
3. All parts of anomalous clastic wedge 77.5-75Ma
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1. DISTAL LOWSTAND SHORELINES:
HAYSTACK MTS

Photo R. Martinsen
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LOWSTAND DELTAS
ARE SKEWED
SOUTHWARDS

Conceptual Depositional Model |
Hatfield Dome O'Brien Springs Member Saestog




2. Tide influence in
estuary deposits as upper
parts of Upper Cretaceous
shoreline sequences

Devine, 1991
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UNUSUALLY THICK TIDAL TRANSGRESSIVE TRACT:
CHIMNEY ROCK, WYOMING-UTAH BOUNDARY
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THREE CAMPANIAN SETTINGS W/STRONG TIDAL INFLUENCE:
1. Distal shoreline sands (lowstand) on wedge fringe

2. Transgressive tracts on most high-frequency sequences
3. All parts of anomalous clastic wedge 77.5-75Ma
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3. STRONG TIDAL
INFLUENCE ON

77.5-75 Ma

COASTLINES

* 40pr/392r radiometric control from Cobban et al,, 2006
*x 4OAar/:’gAr radiometric control from Cobban et al., 2006
(corrected from Baadsgaard et al., 1993)

e 400,39+ radiometric control from Izett et al,, 1998
-~ Time-position of radiometric dating
[[XR] Low Aspect Ratio Clastic Wedge (sensu Aschoff and Steel, In Press)
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EXAMPLE OF TIDE-INFLUENCED, LOW-
ACCOMMODATION, ANOMALOUS WEDGE (77.5-75Ma)

* Coastlines were strongly tide-influenced and incised

e Regressive shoreline transits were extensive & rapid

 Compare Sego/Corcoran/Cozette with Rollins
shoreline behaviour




Anomalous low-accommodation interval: lles Fm

Mancos Shale




CONCLUSIONS

1. Distal belt of tide-influenced shorelines possibly caused by
constriction of WIS at sea-level lowstands

2. Anomalous 77.5-75Ma interval with widespread tide influence
likely due to embryonic Laramide uplifts

s ! (QNR Likely eastern edge of
£ A Campanian western
sediment prism at 74 Ma






