Influence of Pressurized Shale of Akata Formation on Clastic Reservoir Developments, Offshore Niger Delta Using Seismic-Attributes Modeling*

Jonathan Johnson¹

Search and Discovery Article #40844 (2011) Posted December 12, 2011

Objectives and Summary

Objectives

- To evaluate complex interactions between the structural evolution of basins characterized by shale tectonics and sedimentation using modeling of seismic attributes.
- To develop a workflow approach and assess its efficiency as viable tools for assisting hydrocarbon exploration and production in similar depositional and tectonic settings.

Summary

- Reservoir sand deposition and distribution are mainly faults/diapirs-controlled due to shale tectonics in this area.
- The chance for lateral elongated and connected reservoir deposits might be minimal; because of proximity to the shale layer, there will be continual creation and destruction of accommodation space.
- Workflow combining structural contours, RMS amplitude, time slices, and well data will give a reliable insight in prospecting for reservoir structures and deposits in the subsurface.
- Seismic attributes when validated by well data can be employed in evaluating structural trends, distribution of reservoir deposits, and hydrocarbon occurrences.
- It can be employed as tool for exploration work in complex basins.

Selected References

Atherm, W., R.M. Groenenberg, S.M. Luthi, M.E. Sonselaar, D. Sokoutis, and E. Willingshofer, 2010, Relay ramps as pathways for turbidity currents; a study combining analogue sandbox experiments and numerical flow simulations: Sedimentology, v. 57/3, p. 806-823.

^{*}Adapted from presentation at AAPG Geoscience Technology Workshop, "International Shale Plays," Houston, Texas, October 11-12, 2011

¹Delft University of Technology, Delft, The Netherlands (favouredjonathan88@yahoo.com) under supervision of Prof. Andrea Moscariello.

Burke, K., T.F.J. Dessauvagie, and A.J. Whiteman, 1971, Oopening of the Gulf of Guinea and geological history of the Benue depression and Niger delta: Nature Physical Science, v. 23/38, p. 515-55.

Doust, H., and E. Omatsola, 1990, Niger Delta *in* J.D. Edwards and P.A. Santogrossi, (eds.), Divergent/passive margin basins: AAPG Memoir 48, p. 201-238.

Fugelli, E.M.G., and T.R. Olsen, 2005, Screening for deep-marine reservoirs in frontier basins; Part 1; Examples from offshore mid-Norway: AAPG Bulletin, v. 89/7, p. 853-882.

Fugelli, E.M.G., and T.R. Olsen, 2005, Risk assessment and play fairway analysis in frontier basins; Part 2; Examples from offshore mid-Norway: AAPG Bulletin, v. 89/7, p. 883-896.

Knox, G.J., and E.M. Omatsola, 1990, Development of the Cenozoic Niger Delta in terms of the "escalator regression" model and impact on hydrocarbon distribution *in* W.J.M. van der Linden, S.A.P.L. Cloetingh, J.P.K. Kaasschieter, W.J.E. van de Graaff, J. Vandenberghe, and J.A.M. van der Gun, (eds.), Proceedings of the symposium on Coastal lowlands; geology and geotechnology: Kluwer Academic Publishers, Dordrecht, Netherlands, p. 181-202.

Xijin, Liu, 2006, Depositional control on hydrocarbon accumulations in deepwater Nigeria: AAPG Annual Conventions, Abstracts v. 15, p. 64-65.

Influence of Pressurized Shale of Akata Formation on Clastic Reservoir Developments-Offshore Niger Delta Using Seismic-Attributes Modeling

_{By:} Jonathan Johnson

Outline

- Objectives
- Geological Settings of Niger Delta
- Proposed sedimentation models due to Shale Tectonics
- Tomboy Field Data and Seismic Well Calibration
- Seismic and Geological Attributes Modeling
- Inferences
- Recommendations

Objectives

• To evaluate complex interactions between the structural evolution of basins characterized by shale tectonics and sedimentation using seismic-attributes modeling

• To develop a workflow approach and assess its efficiency as viable tools for assisting hydrocarbon exploration and production in similar depositional and tectonic settings

Geological Settings

- Lat. 3°N to 6°N
- Long.5°E to 8°E

Stratigraphy

Alluvial Sand: Benin Fm.
Deltaic Facies: Agbada Fm.
Marine Shale: Akata Fm.

Proposed Sedimentation Models

A. Regression Escalator Model

Schematic illustration modified after Knox and Omatsola, 1990

B. Turbidity Hydraulic Jump Model

Schematic illustration modified after Xijin, 2006

Tomboy

4°N Lat. Long. 4.5°E 120 Km Offshore 1000-2000 m Water Depth

25 50 km

Base Map:

• Area: 550 sq km

• Inline: 400

• X-lines: 220

• Wells: 4

Benin Fm.

TWT 0 – 1.34 s Low amplitude Low continuity

Agbada Fm.

TWT 1.34 – 2.75 s
Parallel reflection
High continuity
High amplitude
Highly faulted

Akata Fm.

TWT 2.75 s below Chaotic reflection Low amplitude No continuity

Seismic Facies: Amplitude and Reflection Continuity

Well Calibration:

• Top Agbada Fm

Scale 1cm:300 meters

LAYER CAKEVELOCITY MODEL: T-D CONVERSIONS

					ı	<u> </u>
INTERVAL	FORMATION BOUNDARY 1- REFLECTOR 1					
Well-Name	TWT Top(s)	TWT Base(s)	Z Top(m)	Z Base(m)	Calculated V- interval	Calculated Depth
TM0002	1359	1928	1396	1965	2000.0	1956.4
TM0006	1354	1913	1369	1930	2007.2	1941.4
TM0005	1339	1910	1400	1940	1891.4	1937.8
		FINAL V-INTERVAL			1966.2	
INTERVAL	REFLECTOR 1 – REFLECTOR 2					
Well-Name	TWT Top(s)	TWT Base(s)	Z Top(m)	Z Base(m)	Calculated V- interval	Calculated Depth
TM0002	1928	2176	1965	2203	1919.4	2200.9
TM0006	1913	2179	1930	2181	1887.2	2203.6
TM0005	1910	2149	1940	2192	2108.8	2173.4
	FINAL V-INTERVAL			NTERVAL	1971.8	
ITERVAL REFLECTOR 2 – REFLECTOR 3						
Well-Name	TWT Top(s)	TWT Base(s)	Z Top(m)	Z Base(m)	Calculated V- interval	Calculated Depth
TM0002	2176	2456	2203	2480	1978.6	2476.5
TM0006	2179	2438	2181	2500	2463.3	2458.6
TM0005	2149	2433	2192	2400	1464.8	2453.0
			FINAL V-IN	ITERVAL	1968.9	

Structural Map

Horizon: MR-I

• Surface Level: MR-1; Faults: Few; Akata proximity: Low

Structural Map

Horizon: MR-3

• Surface Level: MR-3; Faults: Many & Complex; Akata proximity: High

Isochore/Thickness Map

Interval: MR-I & MR-2

• Depositional thickness is associated with downthrown sides of Faulted Blocks

Isochore/Thickness Map

Interval: MR-2 & MR-3

• Increased Depositional thickness close to Mobile Akata Shale layers

RMS Amplitude Maps

Interval: MR-I & MR-2

• High **RMS Amplitude** associated with homogenous **sand deposits** (Fugeli & Olsen, 2005; Athmer et al, 2010)

RMS Amplitude Map

Interval: MR-2 & MR-3

•Higher **RMS Amplitude** at downthrown side of **faulted block F1** (Fugeli & Olsen, 2005; Athmer et al, 2010)

Reflection Intensity Map

Time Slice: MR-3 (-2370 ms)

• Time Slice Indicating high amplitude difference between F1 and F7?

Time Slice: MR-3 (-2380 ms)

- Increasing amplitude difference
- Supposed broader sand depositional centre between F1 and F7?

Time Slice: MR-3 (-2390 ms)

- •Sand depositional centre diminishes between FI and F7?
- •Faults terminating?

Shale effects on Mapped Sedimentary Layers

- •High proximity to **Akata Shale**
- •Growth faults: FI and F3
- •Shale effects? A-D thinner C-D

Inferences

- Reservoir sand deposition and distribution are mainly faults-diapirs controlled due to shale tectonics in this area.
- •The chance for lateral elongated and connected reservoir deposits might be minimal; since close to the shale layer, there will be incessant creation and destruction of accommodation space.
- •A workflow combining structural contours, RMS amplitude, time slices, and well data will give a reliable insight in prospecting for reservoir structures and deposits in the subsurface.

Constraints

- Absence of Cores and Biostratigraphical Data
- Absence of Pressure data

Recommendations

- Seismic attributes when validated by well data can be employed in evaluating structural trends, distribution of reservoir deposits, and hydrocarbon occurrences.
- It can be employed as tool for exploration work in complex basins.

Thank you for listening

Questions?