Experimental Gas Extraction by Rock Crushing: Evidence for Preservation of Methane in Core Samples from the Mudstones of the Eagle Ford Formation and Barnett Shales*

Tongwei Zhang¹, Stephen C. Ruppel¹, Kitty Milliken¹ and Rongsheng Yang¹

Search and Discovery Article #40807 (2011)
Posted September 26, 2011

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Houston, Texas, USA, April 10-13, 2011.

¹Bureau of Economic Geology, The University of Texas at Austin, Austin, TX. (tang@peeri.org)

Abstract

Accurately determining oil-in-place (OIP) and gas-in-place (GIP) is critical for evaluating shale oil and gas plays. Methane is typically stored in nano-size pores in low permeability mudstones, but many of these hydrocarbon-saturated pores may isolate from surrounding mineral matrix. A rock crushing experiment has been devised to test for the presence of gas and condensate in isolated nanopores. We utilize a gas-tight rock crushing cell that can directly introduce released gas to a gas chromatograph after crushing. We have tested this method on mudstones of the Upper Cretaceous Eagle Ford Formation, an emerging oil/gas shale play in the Maverick Basin and the adjacent San Marcos Arch of South Texas.

Five core samples (depths: 4,758ft to 13,608 ft) were collected from the organic matter-rich lower Eagle Ford unit and used in our study. TOC content and Tmax values range from 1.8% to 8.5%, and 428°C to 543°C, respectively. Calculated Ro, based on Tmax, ranges from 0.5% to 2.6%. Hydrogen index (HI) ranges from 741mgHC/g TOC at Ro of 0.5% to 14 mgHC/g TOC at Ro > 1.6%. The large decrease in HI value with increasing thermal maturity results from the transformation of organic matter to oil and gas. CH₂Cl₂ extractable hydrocarbons show that the ratio of the sum of C₈-C₁₄ to the sum of C₁₅-C₃₂ increases with thermal maturity. The above geochemical observation clearly suggests that oil properties in the organic-rich lower Eagle Ford unit are closely related to thermal maturation of organic matter.

CH₄/CO₂ ratios of gases released during crushing are lower at low thermal maturities and higher at high maturities because more CH₄-rich gas is generated at high maturity levels. CH₄/CO₂ ratios decrease with longer rock crushing time because of the increase in the CO₂-rich adsorbed-gas contribution. Both thermal maturity and gas desorption contribute to changes in CH₄/CO₂ ratio of gas released from rock crushing. However, no obvious compositional fractionation occurs among C₁, C₂ and C₃ during rock crushing. C₁/C₂ and C₂/C₃ ratios remain constant through crushing but greatly increase when the level of thermal maturity is high. Geochemical parameters (C₁/C₂, iC₄/nC₄) of gas released during rock crushing are good indicators of thermal maturation of organic-rich shales. CH₄/CO₂ ratio is a good indicator of free gas and adsorbed gas contributions.
References

Experimental Gas Extraction by Rock Crushing

Evidence for Preservation of Methane in Core Samples from the Mudstones of the Eagle Ford Formation and Barnett Shales

Tongwei Zhang, Kitty Milliken, Steve Ruppel, Rongsheng Yang

The Bureau of Economic Geology
The University of Texas at Austin
General Scheme of Hydrocarbon Formation with Source Rock Burial

(Tissot and Welte, 1978)
Questions

• What are main controlling factors of gas chemistry in shale gas systems?

• What differences exist between gases produced from kerogen primary cracking and secondary oil cracking?

• What are the main gas storage components: free gas vs. adsorbed gas?

• How does mineral matrix affect gas storage?

• Are major gas storage components predictable by integrating gas chemistry and rock properties?
Eagle Ford Core Gas Data

- Tesoro Hendershot #1
- Getty Hurt #1
- Shell Hay #1
- Shell Leppard #1
- Shell Roessler #1
Eagle Ford Core Geochemistry Data

For a Range of Thermal Maturities

<table>
<thead>
<tr>
<th>Well parameters</th>
<th>Hendershot #1</th>
<th>Getty Hurt #1</th>
<th>Shell Hay #1</th>
<th>Shell Leppard #1</th>
<th>Shell-Roessler #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (ft)</td>
<td>4758</td>
<td>7298</td>
<td>13825</td>
<td>13827</td>
<td>13608</td>
</tr>
<tr>
<td>TOC</td>
<td>8.5</td>
<td>1.8</td>
<td>5.3</td>
<td>2.26</td>
<td>5.0</td>
</tr>
<tr>
<td>S1</td>
<td>1.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.83</td>
<td>0.2</td>
</tr>
<tr>
<td>S2</td>
<td>63.2</td>
<td>3.6</td>
<td>1.4</td>
<td>0.72</td>
<td>0.7</td>
</tr>
<tr>
<td>S3</td>
<td>1.0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.32</td>
<td>0.3</td>
</tr>
<tr>
<td>S2/S3</td>
<td>63</td>
<td>12</td>
<td>3.4</td>
<td>2.25</td>
<td>3</td>
</tr>
<tr>
<td>S1/TOC</td>
<td>21</td>
<td>86</td>
<td>33</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>Tmax (° C)</td>
<td>428</td>
<td>446</td>
<td>475</td>
<td>494</td>
<td>533</td>
</tr>
<tr>
<td>Ro(%)_calc</td>
<td>0.5</td>
<td>0.9</td>
<td>1.4</td>
<td>1.73</td>
<td>2.4</td>
</tr>
<tr>
<td>HI</td>
<td>741</td>
<td>201</td>
<td>27</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>OI</td>
<td>12</td>
<td>17</td>
<td>8</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>PI</td>
<td>0.03</td>
<td>0.25</td>
<td>0.54</td>
<td>0.54</td>
<td>0.24</td>
</tr>
</tbody>
</table>
TIC of Solvent Extracts
Eagle Ford Core Samples

- Hendershot #1, Ro=0.5%
- Getty Hurt #1, Ro=0.9%
- Hay ED Unit #1, Ro=1.4%
- Shell Leppard 1, Ro=2.4%
- Getty Hurt #1, Ro=0.9%
- Hendershot #1, Ro=0.5%
Barnett Shale Core Gas Data

Sampled Cores
- 1=Lee C-5-1
- 2=Tarrant #A-3
- 3=Young #2
- 4=Sims #2
- 5=Blakely #1
Barnett Core Geochemistry Data
For a Range of Thermal Maturities

<table>
<thead>
<tr>
<th>Well Parameters</th>
<th>Brown, TX, LeeC-5-1</th>
<th>Jack, TX, Tarrant #A-3</th>
<th>Wise, TX Young #2</th>
<th>Wise, TX Sims #2</th>
<th>Wise, TX, Blakely #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (ft)</td>
<td>1250</td>
<td>6164</td>
<td>6168</td>
<td>6918</td>
<td>7634</td>
</tr>
<tr>
<td>TOC</td>
<td>7.88</td>
<td>7.05</td>
<td>3.27</td>
<td>4.50</td>
<td>3.64</td>
</tr>
<tr>
<td>S1</td>
<td>1.64</td>
<td>4.29</td>
<td>1.50</td>
<td>2.01</td>
<td>0.36</td>
</tr>
<tr>
<td>S2</td>
<td>20.24</td>
<td>14.74</td>
<td>4.07</td>
<td>2.86</td>
<td>1.07</td>
</tr>
<tr>
<td>S3</td>
<td>0.48</td>
<td>0.26</td>
<td>0.32</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>S2/S3</td>
<td>61</td>
<td>57</td>
<td>13</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>S1/TOC</td>
<td>37</td>
<td>61</td>
<td>46</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>Tmax (° C)</td>
<td>430</td>
<td>443</td>
<td>455</td>
<td>466</td>
<td>472</td>
</tr>
<tr>
<td>Ro(%)_calc</td>
<td>0.58(c)</td>
<td>0.81(c)</td>
<td>1.03(c)</td>
<td>1.23(c)</td>
<td>1.61(m)</td>
</tr>
<tr>
<td>HI</td>
<td>551</td>
<td>209</td>
<td>124</td>
<td>64</td>
<td>29</td>
</tr>
<tr>
<td>OI</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>PI</td>
<td>0.06</td>
<td>0.23</td>
<td>0.27</td>
<td>0.41</td>
<td>0.25</td>
</tr>
</tbody>
</table>
TIC of Solvent Extracts from Barnett Shale
Limitation of Methods in Hydrocarbon Characterization of Mudrocks

Ro(%) 0.5 0.8 1.2 2.0 2.5

Rock-Eval

Solvent extract by GC, GCMS

Optical methods (Ro)

Gas chemical and isotopic compositions
Gas Samples for Shale Gas Studies

- Canister desorption gas
- Mud gas in drilling
- Producing gas in shale gas wells
- Released gas in gas-tight rock crushing
 - Proposed idea and its significance
 - Preliminary gas chemical compositional results from gas-tight rock crushing
 - Potential application
Released Gas in Rock Crushing

- There is a possibility of the presence of isolated pores filled with gases.

- Preserved gas will be released in rock crushing to powder.

- A gas-tight rock crushing cell is critical to test the technique.

- The stainless steel cell from our existing SPEX 8000M Mixer/Mill machine is modified with on-line filter and on/off valve.
Gas-tight Vial for Rock Crushing
Experimental setup for gas-tight rock crushing

- Shale Sample
- Exit port with valve
- Hard Steel Vessel
- Ball Bearing
- 2 inches
Rock Crushing Process and Gas Recovery

Create vacuum;
then seal container
After Crushing, Gas Samples Withdrawn

Gases to chromatograph
Both thermal maturity and gas desorption contribute to changes in CH$_4$/CO$_2$ ratio of released gas from rock crushing.

CH$_4$/CO$_2$ ratios are lower at low thermal maturities because less CH$_4$-rich gas is generated at low maturity levels.

CH$_4$/CO$_2$ ratios decrease with longer rock crushing time because of increasing CO$_2$-rich adsorbed gas contribution.
Similar CH_4/CO_2 Ratio Changes are Observed in Barnett Shale Samples

- Similar changes in CH_4/CO_2 ratios are seen in Barnett Shales of various thermal maturity in rock crushing.

- CH_4/CO_2 ratio changes may indicate free gas preservation.
Proposed Mechanism of Gas Releasing in Shales

- CH$_4$ dominates free gas in the very early stages of rock crushing.
- CO$_2$-rich adsorbed gas is dominant in late stages.
No Obvious Compositional Fractionation Occurs Between C_1 and C_2 in Rock Crushing

Barnett Shale

Eagle Ford
No Obvious Compositional Fractionation Occurs Between C_2 and C_3 in Rock Crushing

Barnett Shale

Eagle Ford

![Graphs showing C_2/C_3 ratio against crushing time for Barnett Shale and Eagle Ford with different Ro values: Ro=0.58%, Ro=0.8%, Ro=1.0%, Ro=1.2%, Ro=1.4%, Ro=1.6%, Ro=1.7%, Ro=1.9%, Ro=2.0% for Barnett Shale; Ro=0.5%, Ro=0.9%, Ro=1.7%, Ro=2.4% for Eagle Ford.](image)
\(iC_4/nC_4 \) at \(Ro \leq 1.7\% \)

Barnett Shale

Eagle Ford
iC_4/nC_4 at $Ro > 1.7\%$

Barnett Shale

- 7112 ft ($Ro=1.96\%$)
- 7192 ft ($Ro=2.01\%$)
- 7223 ft ($Ro=2.07\%$)

Eagle Ford

- Blakely #1: $Ro=2.4\%$
- $Ro=2.7\%$
Relationship Between Thermal Maturity and C_1/C_2 ratio

![Graph showing the relationship between thermal maturity (Ro) and C_1/C_2 ratio for Barnett Shale and Eagle Ford.](image)

- **Barnett Shale** represented by orange circles.
- **Eagle Ford** represented by magenta triangles.
Relationship Between Thermal Maturity and iC_4/nC_4 ratio

- Barnett Shale
- Eagle Ford

- kerogen primary cracking gas
- oil secondary cracking gas
- clay mineral catalysis?
Comparison of Gas Chemistry from Rock Crushing Gas and Production Gas

• Gas chemistry data from rock crushing are comparable to those of producing gas in Barnett shale.

• With increasing thermal maturity, iC4/nC4 ratio increases first due kerogen cracking to gas, then decreases after oil starts cracking to gas.
Conclusions

• Liquid hydrocarbons characterization in mudstone can provide information about thermal maturation, organic type and depositional environments.

• CH$_4$/CO$_2$ ratios from core crushing are controlled by both thermal maturity and gas desorption.

• C$_1$/C$_2$ and C$_2$/C$_3$ are good indicators of thermal maturation of organic-rich shales.

• The role of clay mineral catalysis in oil cracking to gas needs to be investigated.

• Quantified released gas amount in rock crushing and gas isotope compositional measurement need to be addressed.
Acknowledgements

Funding provided by Jackson School of Geosciences Start-up funds and MSRL member funding.