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Abstract 
 
A multidisciplinary study has shed a new light on the process of overpressure in shale gas reservoirs. The work consisted of the integration of 
a large geochemical data set with hydraulic frac and reservoir pressure data from the same wells. Results from this integrated approach 
suggest that distinct pressure domains exist and that their specific depths and attributes can be easily determined. Whereas various 
geochemical analyses give conflicting results at first glance, our study shows consistency in the results especially when engineering data is 
involved in the analysis. 
 
Diverging gas composition results are obtained when using varying sampling techniques. Geochemical compositions from gas 
chromatography differ from either geochemical compositions measured from isojars (cuttings) or from isotubes (free gas), the latter 
exhibiting the highest methane content. In stark contrast, both ethane and propane carbon isotopes give matching and consistent values at 
similar depths despite the sampling differences. 
 
Three geochemical domains can be defined by their characteristic depth trends in ethane and propane carbon isotopes.  
1. A shallow domain is characterized by normally increasing isotope values (less negative) with depth.  
2. An intermediate domain is characterized by a reverse isotopic compositional trend.  
3. A deeper trend is again normal; however, the values are much more negative than in the shallow domain; note that this deeper trend is 

much more linear when dealing with ethane isotopes. 
 
Using the geochemistry results as a starting point, frac gradients and reservoir pressure gradients are examined and re-analyzed. This 
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integration revealed the existence of at least two pressure domains: a normally pressured domain and an overpressured one. The traditional 
way of calculating a pressure gradient (reservoir or frac) is simply dividing the pressure value by the depth. Our data sets, however, indicate 
that individual gradients could be derived for each well or each area and that their intersection with the normal frac gradient is where 
geochemistry indicates the onset of overpressure. 
 
Overpressured systems can thus be estimated by geochemistry, using any of the following parameters, either independently or in combination:  
 Gas composition 
 Gas carbon isotope signatures 
 Rock-Eval data (Tmax).  
Each of these tools has its inherent strengths and limitations as do the various methods of collecting data, all of which are reviewed. 
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Talk outline

• Geochemistry

Tmax RockEval
Vitrinite (Ro) Microscopy
Gas composition Isotubes and Geojars
Isotope composition Isotubes and Geojars

• Frac Gradient

• Reservoir Pressures

• Overpressure links all of the above



Geochemistry

Tmax Rock-Eval

Vitrinite (Ro) Microscopy

Gas composition Isotubes and Geojars

Isotope composition Isotubes and Geojars

Examples from Alberta
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Geochemistry

Tmax Rock-Eval

Vitrinite (Ro) Microscopy

Gas composition Isotubes and Geojars

Isotope composition Isotubes and Geojars

Examples from Quebec



Wells with geochemistry
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Geochemistry

Tmax Rock-Eval

Vitrinite (Ro) Microscopy

Gas composition Isotubes and Geojars

Isotope composition Isotubes and Geojars

Examples from Quebec
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Selected wells for Tmax and Ro trends
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What we have seen before



Quebec, Talisman wells
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Free flowing gas



Gas released
from cuttings
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Well 1 in Area 4 
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Ethane isotope
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Ethane isotope
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Uncertainty on 
isotope reversal

(Ethane vs Wetness)
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Frac Gradients

• Data from fracs in vertical wells

• All of the ISIP data are

from interpretation of one single completion engineer

ISIP = Instantaneous Shut-In Pressure   in Kpa
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Reservoir Pressure

• Data from monitors left for six months downhole in vertical wells

• All of the data from interpretation of one single reservoir engineer
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Two domains can be distinguished:

Normally pressured and overpressured

Two gradients could be used to characterize a zone in one area
Instead of multiple gradients for every hydraulic frac

Frac data should be sufficient to estimate reservoir pressure

Usable for resource assessments and mud­weight prediction

In horizontal wells it is recommended to use only the first frac stage data
The only frac in virgin rock

Pressure  Conclusions



Practical / economical Implications

Mud­weight predictions

Casing Strength Prediction

Choosing where to drill and frac
Overpressured zone
Dry gas window
Optimal frac pressure depth




