
Origin of Overpressure and Pore Pressure Prediction in the Baram Delta Province, Brunei* 
 

Mark Tingay1, Richard Hillis1,2, Richard Swarbrick3, Chris Morley4, and Razak Damit5 
 

Search and Discovery Article #40709 (2011) 
Posted March 11, 2011 

 
*Adapted from oral presentation at AAPG Geoscience Technology Workshop, Singapore, October 28-29, 2010 
 
1Australian School of Petroleum, Adelaide, Australia (mark.tingay@adelaide.edu.au)  
2Deep Exploration Technologies CRC, Adelaide, Australia 
3GeoPressure Technology, Durham, England 
4PTT Exploration and Production, Bangkok, Thailand 
5Brunei Shell Petroleum, Seria, Brunei 
 

Conclusions 
 

• Distinguish between disequilibrium compaction and fluid expansion overpressures. 
• Disequilibrium compaction and fluid expansion overpressures occur in geographically and geologically distinct areas. 
• Sonic log data successfully predicts pore pressure in disequilibrium overpressures using an Eaton exponent of 3.0. 
• Sonic log data responds to inflationary overpressures, and we can reasonably predict pore pressure using an Eaton exponent of 6.5. 
• Foundations for PPP from seismic velocities and LWD. 
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Geological Features associated with Overpressure in Brunei

Interpreted shale diapirs, Brunei
Mud Volcano, 

near Miri Sarawaknear Miri, Sarawak

Seismic image adapted from PGS Bru
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Goal: accurate PPP from seismic & LWD data. 

But what do we need to know first?
 

 What are the overpressure generation mechanisms?  
 

Wh d diff t t f ? Where do different types of overpressure occur?
 

 How do different types of overpressure affect rock properties – How do different types of overpressure affect rock properties  

can we detect overpressure from log data? 
 

 Can we predict pore pressure from log data? 
 

 Can we detect overpressure and predict pore pressure from 

seismic velocities and ‘Logging While Drilling’ data?gg g g
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Distribution of Overpressure in Brunei
 
 RFTs, mud weights, 

LOTs, DSTs, kicks and 
losses collected forlosses collected for 
157 wells in 61 fields. 

 
 Overpressures 

observed in 101 wells 
in 54 fields (P >11 5in 54 fields (Pp >11.5 
MPa/km). 

 
 Sub-lithostatic pore 

pressure magnitudes 
observed in 42 fieldsobserved in 42 fields.

 
 

 



Depth to Top of Overpressure in Brunei
 
 Overpressures can be 

split into Outer and 
Inner Shelf DomainsInner Shelf Domains

 

 Inner shelf 
overpressures haveoverpressures have 
sharply varying depth 
to onset and are highly 
compartmentalized.

 
 Outer shelf Outer shelf 

overpressures 
gradually shallow 

d NWtowards NW, onset at 
top of pro-delta shales.

 
 

 



(a) (b)Depth to Top of Overpressure in Brunei

Inner and o terInner and outer 
shelf have different 

petroleum play 
types and sampletypes and sample 

different 
stratigraphic units:

Inner: Deltaics

O t P d ltOuter: Pro-delta 
shales



Overpressure Origin and PPP in Brunei

INTRODUCTION INTRODUCTION
 
 DISTRIBUTION OF OVERPRESSURE 
 
 OVERPRESSURE ORIGIN 

 PETROPHYSICAL RESPONSE TO OVERPRESSURE 
 

 IMPLICATIONS FOR PORE PRESSURE PREDICTION IMPLICATIONS FOR PORE PRESSURE PREDICTION
 
 SUMMARY 
 
 
 
 



Disequilibrium Compaction Overpressure 
 
 Occurs when fluid expulsion is impeded during compaction Occurs when fluid expulsion is impeded during compaction
 
 Pore fluids support some of the overburden and become OP’d 
 
 

 
 
 
 
 
 
 



Fluid Expansion/Inflation Overpressure
 

 Increase in fluid volume within a confined pore space.p p
 Kerogen-to-gas maturation, clay diagenesis, aquathermal 

expansion, vertical transfer along faults and fractures into shallower 
i (i fl ti )reservoirs (inflation).

 
 

 
 
 
 
 
 
 



Determining Overpressure Origin: Porosity-Effective Stress Plots

Modified after Bowers (1994)
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Laksamana-1 & Perdana-1 Bowers PlotWell A Sonic Velocity-Effective Stress Plot
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PGM-1 Bowers PlotWell B Sonic Velocity-Effective Stress Plot
4.5

Well B Sonic Velocity-Effective Stress Plot
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Bugan-1 Bowers Plot Well C Sonic Velocity-Effective Stress Plotg
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Well C Sonic Velocity-Effective Stress Plot
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Brunei Bowers Type Plot
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Overpressures on and off the loading curveOverpressures on and off the loading curve



(a) (b)Which Fluid Expansion Mechanism?

No conventionalNo conventional 
fluid expansion 

mechanism exists 
for overpressures in p

the inner shelf 
deltaics.

Inner shelf region 
has undergone 

extensive inversionextensive inversion 
resulting in 

migration of huge 
volumes of fluid outvolumes of fluid out 
of pro-delta shales 
(including oil & gas)
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Petrophysical Response of Overpressure

C d t t ti ll t f d ?

Petrophysical Response of Overpressure

Can we detect vertically transferred overpressures? 
 
 Calibrate sonic and density derived porosities in normally Calibrate sonic  and density derived porosities in normally 

compacted, normally pressured shales 

 

 Compare porosity estimated from density and sonic logs in p p y y g

different overpressure mechanisms 
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Well B: Fluid Expansion
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Well C: Fluid Expansion & Disequilibrium Compaction
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Petrophysical Response of OverpressurePetrophysical Response of Overpressure

 Sonic log shows response in vertically transferred 

overpressures – even though there is no porosity change.p g p y g

 

H d t l (1998) t th i l i l i fl id Hermanrud et al. (1998) suggest the sonic log is slower in fluid 

expansion overpressures due textural changes in the rock. 

 
 There is hope for reliable pore pressure prediction in fluid 

expansion overpressures! 
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Pore Pressure Prediction

E t th d (1972)

Pore Pressure Prediction

 Eaton method (1972):

Pp = v - (v-Pnorm)(tnorm/tobs)X p

 

Di ilib i ti ( t h lf) 3 0 Disequilibrium compaction (outer shelf): x=3.0

 

 Fluid expansion (inner shelf): x=6.5 
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Bowers Plot
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Well C: Vertical Transfer & Disequilibrium Compaction
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Pore Pressure PredictionPore Pressure Prediction

Issues with pore pressure prediction: 
 


 

 effect of uplifte ect o up t
 

 x=6.5 results in ‘noisy’ prediction in normal pressures 
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Summary of Conclusions
 

 Distinguish between disequilibrium compaction and fluid 

expansion overpressuresp p
 

 Disequilibrium compaction and fluid expansion overpressures 

occur in geographically and geologically distinct areas 
 

S i l d t f ll di t i Sonic log data successfully predicts pore pressure in 

disequilibrium overpressures using an Eaton exponent of 3.0 
 

 Sonic log data responds to inflationary overpressures and we can 

reasonably predict pore pressure using an Eaton exponent of 6.5 
 

 Foundations for PPP from seismic velocities and LWD Foundations for PPP from seismic velocities and LWD
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