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Conclusions

Distinguish between disequilibrium compaction and fluid expansion overpressures.

Disequilibrium compaction and fluid expansion overpressures occur in geographically and geologically distinct areas.

Sonic log data successfully predicts pore pressure in disequilibrium overpressures using an Eaton exponent of 3.0.

Sonic log data responds to inflationary overpressures, and we can reasonably predict pore pressure using an Eaton exponent of 6.5.
Foundations for PPP from seismic velocities and LWD.
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Pressure (MPa)

e Pore pressure rises over 20
MPa in 100 m (from 12.5 to
21.5 MPa/km)

e Pore pressures are at
approximately lithostatic

gradients at 2000 m depth
Well X

Mud Weight Well Y

e | ocated 800m from Well X and
separated by single resolvable

\\\ fault of 60m throw.
Highly compartmentalized pore
\ el pressures and horizontal stresses
Hydrosta

Hydrostat 12 14 16 18 20 22 MPa/km
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Goal: accurate PPP from seismic & LWD data.

But what do we need to know first?

e \What are the overpressure generation mechanisms?
e \Where do different types of overpressure occur?

e How do different types of overpressure affect rock properties —

can we detect overpressure from log data?

e Can we predict pore pressure from log data?

e Can we detect overpressure and predict pore pressure from

seismic velocities and ‘Logging While Drilling’ data?




Overpressure Origin and PPP in Brunel
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Overpressure Origin and PPP in Brunel

e DISTRIBUTION OF OVERPRESSURE
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Distribution of Overpressure in Brunel

e RFTs, mud WeightS, 3:::;:;5;:_;1“md Laﬁ‘sahrflanad
LOTs, DSTs, kicks and o |
losses collected for b ompion
157 wells in 61 fields. : /.. Champion

Iron Duke / Mam
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observed in 101 wells Fajrley Magpie

in 54 fields (P, >11.5 Y e
MPa/km).

e Sub-lithostatic pore Southwest >
pressure magnitudes ’
observed in 42 fields.




Depth to Top of Overpressure in Brunel

e Overpressures can be
split into Outer and
Inner Shelf Domains

e Inner shelf
overpressures have
sharply varying depth
to onset and are highly |[EEESssE
compartmentalized. Diapirs:.

e Outer shelf APPmXimaté"&*’?j
Outer Limit of
overpressures Pliocene Uplift : e®
gradually shallow
towards NW, onset at

top of pro-delta shales.
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Overpressure Origin and PPP in Brunel

e OVERPRESSURE ORIGIN




Disequilibrium Compaction Overpressure

e Pore fluids support some of the overburden and become OP’d
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p\ \ Normal
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Fluid Expansion/Inflation Overpressure

e Increase in fluid volume within a confined

e Kerogen-to-gas maturation, clay diagenesis, aquathermal
expansion, vertical transfer along faults and fractures into shallower
reservoirs (inflation).
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Determining Overpressure Origin: Porosity-Effective Stress Plots
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Brunei Bowers Type Plot A
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Well A Sonic Velocity-Effective Stress Plot
Outer shelf well — Disequilibrium Compaction
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Well B Sonic Velocity-Effective Stress Plot
Inner shelf well - Fluid Expansion / Inflation
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Brunei Bowers Plot
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Overpressure Origin and PPP in Brunel

e PETROPHYSICAL RESPONSE TO OVERPRESSURE




Can we detect vertically transferred overpressures?

o Calibrate sonicand density-derived porosities in normally

compacted, normally pressured shales

« Compare porosity estimated from density and sonic logs In

different overpressure mechanisms
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Well A: Disequilibrium Compaction

Bowers Plot
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Well B: Fluid Expansion

Bowers Plot
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Well C: Fluid Expansion & Disequilibrium Compaction
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e Sonic log shows response in vertically transferred

overpressures — even though there is no porosity change.

e Hermanrud et al. (1998) suggest the sonic log is slower in fluid

expansion overpressures due textural changes in the rock.

e There is hope for reliable pore pressure prediction in fluid

expansion overpressures!
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o Eaton method (1972):
I:)p = Oy - ((Sv'F)norm)X(Atnorm/Atobs)X

e Disequilibrium compaction (outer shelf): x=3.0

e Fluid expansion (inner shelf): x=6.5




Well A: Disequilibrium Compaction

Bowers Plot
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Well B: Vertical Transfer
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Well C: Vertical Transfer & Disequilibrium Compaction
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Issues with pore pressure prediction:

* sharp Pp increases are underestimated

o effect of uplift

e X=6.5 results in ‘noisy’ prediction in normal pressures
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Overpressure Origin and PPP in Brunel

o SUMMARY




Summary of Conclusions

e Distinguish between disequilibrium compaction and fluid

expansion overpressures

e Disequilibrium compaction and fluid expansion overpressures

occur in geographically and geologically distinct areas

e Sonic log data successfully predicts pore pressure in

disequilibrium overpressures using an Eaton exponent of 3.0

e Sonic log data responds to inflationary overpressures and we can

reasonably predict pore pressure using an Eaton exponent of 6.5

e Foundations for PPP from seismic velocities and LWD
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