Visualization Process Approach to Identify Scenarios to Improve Recovery in a Mature and Stratigraphically Complex Reservoir: El Cordon Field*

M. Santisteban¹, E. Altamiranda¹, M.I. Rodriguez¹, R. Alvarez², and M. Bracho de P. ²

Search and Discovery Article #20100 (2011) Posted February 21, 2011

*Adapted from oral presentation at AAPG Geosciences Technology Workshop, "New Ways to Look at Old Data: New Pay Zones, Increased Production, Expanded Regional Plays," Houston, Texas, November 8-9, 2010.

¹Repsol-YPF

²RPS-Scotia (<u>AlvarezR@rpsgroup.com</u>)

Executive Summary

- Initial production in 1954.
- Implementation of water injection in 1979.
- El Cordon reservoir produces oil and gas from Cañadon Seco, Caleta Olivia and Mina El Carmen formations.
- Very complex sedimentary environment.
- Limited lateral and vertical communication between sands.

Petrophysical Modeling

- 1. Well log data base for the 138 wells received for the study.
- 2. The 138 wells represent about 20% of the total number of 626 wells in the reservoir. 41 wells (6%) have Formation Density Logs (FDC), 6 wells (0.9%) had Sonic Logs.
- 3. Well log information was not areally distributed.
- 4. Limited tops/zones information.
- 5. No blue-print headers available.
- 6. Products were focused in determination of the key parameters for the volumetric estimation of hydrocarbons in-place.

Geocellular Model

- Improve efficiency through reservoir modeling.
- 3D representation of the reservoir features.
- Areal and vertical distribution of sand bodies.
- Control area oil in-place calculation.

OOIP Estimation

- Very complex sedimentary environment.
- Limited lateral and vertical communication between sands.
- Sands average thickness about 2.5 meters.
- Sands extend to a distance between 1-4 well spacing.
- 'Key Area' was used to calibrate probabilistic approach.

Scenarios

Base case
Well reactivation
New well drilling
Infill drilling
Water flooding
Polymer injection (screening)

Visualization Process Approach to Identify Scenarios to Improve Recovery in a Mature and Stratigraphically Complex Reservoir: El Cordon Field

M. Santisteban, E. Altamiranda, M.I. Rodriguez, Repsol-YPF, R. Alvarez, M. Bracho de P. RPS-Scotia

AAPG GeoSciences Technology Workshop

Houston, November 2010

Content

- Executive Summary
- Data Model
- G&G Overview
- OOIP Estimation
- Dynamic Model
- Scenarios
- Conclusion

Objectives

- Identify Scenarios to improve recovery
- Proved an integrated approach
- Estimate asset value

Reserve Areas How to indentify and materialize the value

Executive Summary

- o Golfo San Jorge (GSJ) Basin
- Southern Flank
- o El Cordon Field

Executive Summary

- Initial Production in 1954
- Implementation of water injection in 1979
- El Cordon reservoir produces Oil and Gas from Cañadon Seco, Caleta Olivia and Mina El Carmen Formations.
- Very complex sedimentary environment
- Limited lateral and vertical communication between sands.

Executive Summary

Efficiency Factors Scoring Technique Sandstone Reservoir Characteristics

Executive Summary

Six scenarios were considered for maximizing reserves recovery:

- 1. Base Case
- 2. Well Reactivation
- 3. New Well Drilling
- 4. Infill Drilling
- 5. Water Flooding
- 6. Polymer Injection (screening)

Integrated Approach

Data Model

Architecture	Petrophysics	Fluids	Historic
Seismic	Well Logs	P.V.T.	Well Tests Production Injection
Geologic	Cores	Samples	

No seismic-geologic project.

3D volume partial coverage (2/3)

138 out of 626 well log were received (22%). 41 wells with porosity indicator (6%) Scarce Core data (19 sample test) 1 recombined sample for PVT, Farigna's correlation used.

2 transient (built up)
Production history
since 1972
Scattered static
pressure data
Incomplete well events
and mechanic
diagrams

G & G Review

G & G Review

Petrophysical Modeling

- 1. Wells log data base for the 138 well received for the study
- 2. The 138 wells represent about 20% of the total number of 626 wells in the reservoir. 41 wells (6%) have Formation Density Logs (FDC), 6 wells (0.9%) had Sonic Logs
- 3. Well log information was not areally distributed
- 4. Limited Tops/Zones information
- 5. No blue-print headers available
- 6. Products were focused in determination of the key parameters for the volumetric estimation of hydrocarbons in-place.

G & G Review Geocellular Model

- Improve efficiency through reservoir modeling
- 3D representation of the reservoir features
- Areal and vertical distribution of sand bodies
- Control Area Oil in-Place calculation

Geocellular Model Cross Section – Porosity Distribution

OOIP Estimation

- Very complex sedimentary environment
- Limited lateral and vertical communication between sds
- Sands average thickness about 2.5 meters
- Sands extend to a distance
 between 1 4 well spacing
- 'Key Area' was used to calibrate probabilistic approach

OOIP Estimation

Probabilistic Approach

OOIP Estimation

POES P ₁₀	POES P ₅₀	POES P ₉₀		
355,506,229.29	484,591,381.34	644,588,726.29		

Statistics: V			
Trials	5000		
Mean	493,597,486.42		
Median	484,591,381.34		
Mode			
Standard Deviation	113,279,634.89		
Variance	1.28E+16		
Skewness	0.47		
Kurtosis	3.24		
Coeff. of Variability	0.23		
Range Minimum	199,377,471.94		
Range Maximum	1,021,898,528.82		
Range Width	822,521,056.88		
Mean Std. Error	1,602,015.96		

OOIP: 484,6 MMBIs Np $_{\rm May\ 06}$: 45,6 MMBIs RF $_{\rm May\ 06}$: 9.4% 9.4%

Reservoir Production History

Waterflooding

Field water injection history

```
DATE:1979/06
                                                                                                                                                                                                         EC-13-FC-1509 EC-296
EC-63-63-1379-C-F3-604-1364-884
                                                                                                                                                                                                              ECF 4502 7949 CET 4035062
                                                                                                                                                                                                                                                                                                                   ECE378494
                                                                                                                                                                              ECE124782 EC-13EC-135ECE8E886498GF9996E82597
EC-2953E9-14E2-297 EC-1618363676CE0F8945EC-480
EC-12458E0F88758 EC-88ECF9B0B9E0B698968537299
ECE12638E0F8B0B0F7CR656E050B9E9698688B748EC-1344
                                                                                                                                                                         EC-E74.35C-F053.8050.000232855924250593433 EC-48.5650599191513
EC-19C37033805920359383836059383834344445 FC-15-EC-134
                                                                                                                                                                                                                   ### 0483 480 482 455 250 388 BC 29 253 44 d<sub>-1415</sub>
                                                                                                                                                                                                                           EC-1604804862630430486878C-876-1354 EC-1510
C-18694604400400406076-1381 EC-299 EC-300 EC-84
                                                                                                                                                        EC-63 EC-1889E01410E00607655381

EC-ECEDBO 337 EC-768 E

EC-1682696EC-708 EC-2029828EC-20268758
                                                                                                                                                                                                                                                                                                                                                                                                      EC-1401
                                                                                                                                                       ECE 396414
                                                                                                                                                                                                                                                                                                                                                                                                EC-628
                                                                                                                                             EC-1#769778689097072168C-#65998989888764760 EC-301
                                                                                                                                                      EC-148E0E8318ECE17E16E16E16E147ECE96E2E38E5E84745
                                                                                                                                                                                                                                                                                                                                                                               EC-76EC-75
                                                                                                                     EC-422C-9604562CE13-117EC-96745640949444669293865676664642936736928
                                                                                                                                    ECEZERO SER BRONTO SEC-16 ECEZERO SECENDO SECURIO SECURIO SECENDA SECURIO SECU
                                                                                                                                       EC-E47E99E727776
                                                                                                                                                                                                          EC-419 ECB9F96694990 ECE12F42B9F98E98BTE866C0B5FB2F73FF7FF7F2F47F7F6F7-EOHT2186
                                                                                                                                                                                                                                                        EC-387 EC 56, 56268112567642617917517253246846958457
ECECTROBEOSISES EC 2834824275472566165805451
                                                                                                               EC-E 0769283396469335392194949
                                                                                                             EC-420 EC-110 1296 1295 1210 1296 14950
                                                                                                                           EC-41EC-41ECE95955951
                                                                                                                                                                                                                                                              EC-232422222222266666666670
                                                                                                                           EC-957
                                                                                         ECECHRO 12年 C - 1446 EC-6至全仓 1200 EC - 1446 ECECHRO 1449 EC-6至全仓 1464 PT - 146 BT 145 BT 145
                                                                                                                                                                                                                                                                                                                                                                                                                          Inyección de Agua (Cal Day) (m3/d)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                402
```

Waterflooding

Field water injection history

Scenarios

Base Case
Well Reactivation
New well drilling
Infill drilling
Water flooding
Polymer injection (screening)

Scenarios

Considerations

- Review of historical production behavior of all wells in the field.
- Probabilistic distribution modeling for Oil Rate, GOR, Water Cut, Number of wells, emphasizing wells reactivated in the last 2 years.
- Analysis of fracture results.
- Four profiles for each scenario: Low (P10), Most likely (P50), High (P90), and a Maximized case: P90 + 25% increase in the number of wells are considered to illustrate the maximum RF.
- RF $_{2017}$ (P50) = 14.47%, includes all scenarios
- RF ₂₀₁₇ (Max) = 21.13%, includes all scenarios

Base Case

- Decline of the production curve to estimate ultimate recovery under current conditions
- Diagnostic Plot: Oil cut vs NP, to validate reserves estimation
- Economic limit was assumed as Qo=2 m³/day
- Incremental Recovery: 514 Mm³ @ year 2017
- Incremental Recovery Factor: 0.67% @ year 2017
- Ultimate Recovery Factor: 10.07% @ year 2017

Well Reactivation

- Currently more than 400 wells shut-in
- In the last 3 years, 15 wells/year have been reactivated.
- Probabilistic distribution for these wells shows:
 - * P10 case: Qo = 0.71 m³/day/well
 - * P50 case: Qo = 1.99 m³/day/well
 - * P90 case: Qo = 5.32 m³/day/well
- P10, P50, and P90 Scenarios were considered
- Production improvement for P90 considers:
 - * Review fracture techniques
 - * High density, high penetration, under-balance.

RPS New Well Drilling (330 m spacing)

- Undeveloped areas near to good producer wells.
- Latest drilling in some of these areas hag demonstrated good potential.
- Oil rate probabilistic distribution for these wells

baseX upon the new wells.

New Well Drilling (330 m spacing)

P10:

- Incremental Reserves: 210 Mm³
- Incremental RF: 0.27%
- Ultimate RF (react +base) : 10.31%

P50:

- Incremental Reserves: 305 Mm³
- Incremental RF 0.72%
- Ultimate RF (react +base) : 10.76%

P90:

- Incremental Reserves: 815 Mm³
- Incremental RF: 1.80%
- Ultimate RF (react +base) : 11.84%

Maximized:

- Incremental Reserves: 1136 Mm³
- Incremental RF: 2.69%
- Ultimate RF (react +base) : 12.73%

Infill Drilling (165 m spacing)

- IFD is a technical opportunity for reserves recovery
- Radius of drainage was modeled
- Determined that infill drilling could be considered
- Placed wells at half current well spacing.
- IFD results in acceleration of production in homogeneous reservoir and incremental recovery in heterogeneous reservoir, without reservoir continuity

RPS Infill Drilling (165 m spacing)

P10:

- Incremental Reserves: 411 Mm³
- Incremental RF: 0.53%
- Ultimate RF (react +base) : 10.51%

• P50:

- Incremental Reserves: 1117 Mm³
- Incremental RF 1.45%
- Ultimate RF (react +base) : 11.49%

P90:

- Incremental Reserves: 1412 Mm³
- Incremental RF: 1.83%
- Ultimate RF (react +base) : 11.87%

Maximized:

- Incremental Reserves: 3909 Mm³
- Incremental RF: 5.07%
- Ultimate RF (react +base) : 15.11%

330 wells are assumed to be drilled to develop the Max Scenario

Waterflooding

- WI since 1979.
- Small pilot areas with low contribution to the total production of the field. Recovery factor (3.18%)"
- Energy support is a high priority"
- WI scenario is baseX on analogy from current WI pilots and available studies.
- In general well production / pressure behavior reflects the waterflooding influence.

Waterflooding

P50:

- Incremental Reserves: 1436 Mm³
- Incremental RF: 1.86%
- Ultimate RF (react +base): 11.9%
- No new wells needed-only conversions and workover
- 108 injector wells
- 162 producer wells
- Based on analog

Polymer Injection

Polymer Flooding: better displacement and volumetric sweep efficiencies

- Increasing the viscosity of water
- Decreasing the mobility of water
- Contacting a larger volume of the reservoir

	Technical Screening Guides	EL CORDON (CS1 / CO / ME)		
Crude Oil: Gravity: Viscosity Composition Not	> 25 API 100 cp critical	25 / 26 / 31 27 / 26/ 12		
Reservoir:				
Oil Saturation:	> 10% PV mobile oil	22		
Type of Formation:	Sandstone, but can be used in carbonate	Sandstone		
Net thickness (m)	Not critical	3-4 mt		
Average Permeability (mD)	> 10	250 /200 / 150		
Depth (m)	< about 2743	1200 / 1300 / 1450		
Temperature (F)	< 200 F to minimize degradation	119 / 126 / 132		

Polymer Injection

Surfactant / Polymer Flooding:

- Lowering the interfacial tension between oil and water
- Solubilization of oil
- Emulsification of oil and water

Mobility enhancement

	Technical Screening Guides	EL CORDON (CS1 / CO / ME)			
Crude:					
Gravity:	> 25 API 25 / 26 / 31				
Viscosity <	30 cp	27 / 26/ 12			
Composition	Light Ántermediates are				
	desirable				
Reservoir:					
Oil Saturation:	> 30% PV mobile oil	22			
Type of Formation:	Sandstone preferred	Sandstone			
Net thickness (m)	> 3.04	3-4 m			
Average Permeability (mD)	> 20	250 /200 / 150			
Depth (m)	< about 2435	1200 / 1300 / 1450			
Temperature (F)	< 175 F	119 / 126 / 132			

Conclusion

Incremental Recovery Factor

	P10		P50		P90		Maximized	
	Mm3	%RF	Mm3	%RF	Mm3	%RF	Mm3	%RF
Base Case	514	0.67%	514	0.67%	514	0.67%	514	0.67%
Reactivation	109	0.14%	305	0.40%	815	1.06%	1136	1.47%
New Wells	210	0.27%	559	0.72%	1386	1.80%	2075	2.69%
Infill Drilling	411	0.53%	1117	1.45%	1412	1.83%	3909	5.07%
Water Flooding			1436	1.86%	1436			1.86%
Incremental RF		1.61%		5.09%		5.35%		11.75%
Cum RF		10.99%		14.47%		14.72%		21.13%

POES (Mm3) 77164 After Visualization POES (MMstb) 485 After Visualization

Cum Oil Prod (Mm3) 2005 7733 RF 2005 9.37%

END