AV The Marcellus Shale Revealed with Full Azimuth 3D Multi-Component Seismic Data*

Tony Rebec¹, Jim Gaiser¹, Alvaro Chaveste¹, and Richard Vern¹

Search and Discovery Article #110160 (2011) Posted June 20, 2011

Summary

- 3D seismic data *will* contribute significantly to the understanding of the Marcellus.
- Geophysical analysis/evaluation, although in the early stages, looks very *promising* for optimizing well locations.

References

Engelder T., 2008, Structural geology of the Marcellus and other Devonian gas shales: Geological conundrums involving joints, layer-parallel shortening strain, and the contemporary tectonic stress field: Field Guidebook for Pittsburgh Association of Petroleum Geologists Field Trip, September 12-13, 2008, and AAPG Eastern Section Meeting Field Trip, October 11-12, 2008, 91 p.

Piotrowski, R.G., and J.A. Harper, 1979, Black shale and sandstone facies of the Devonian "Catskill" clastic wedge in the subsurface of western Pennsylvania: US Department of Energy, Eastern Gas Shales Project, Morgantown Energy Technology Center, Morgantown, West Virginia, EGSP Series 13, 40 p.

^{*}Adapted from oral presentation at Session: Seismic Reservoir Characterization, at AAPG Annual Convention and Exhibition, Houston, Texas, USA, April 10-13, 2011

¹Geokinetics, Houston (<u>Tony.Rebec@geokinetics.com</u>)

The Marcellus Shale Revealed with Full Azimuth 3D Multi-Component Seismic Data.

By

Tony Rebec, Jim Gaiser, Alvaro Chaveste and Richard Vern, Geokinetics, Houston.

The Marcellus Shale Revealed with Full Azimuth 3D Multi-Component Seismic Data.

- Introduction to the Marcellus Shale/data
- Vertical Calibration & Resolution
- Spatial Resolution & Geometric Attributes
- Anisotropic/Rock Property Attributes
- Conclusions

United States Shale Gas Plays

Generalized Geologic Cross-Section of Catskill Delta Magna Facies

Marcellus Shale - Depth & Isopach Maps

Depth Isopach

Bradford-Mehoopany 3D Pennsylvania

3D Data Sets

Zeroing in on the Marcellus Shale Play in Pennsylvania with High Fidelity 3D Full Azimuth Surface Seismic Data Including Simultaneous Multi-Component 3D data for Calibration and Identification of Fracture Sweet Spots. (Data not vertically corrected for velocity differentials)

Vertical Calibration/Resolution

Inline & Crossline

Marcellus Shale Vertical Resolution

Vertical Resolution

Seismic

Thin-Bed Reflectivity re Tanner

Spatial Resolution/Geometric Attributes

Base Marcellus Shale - twt

J1 & J2 Fracture Sets in Marcellus

J1 & J2 Fracture Sets in Marcellus

Natural gas chimneys in black shale showing cross fold J₂ joints

Geology Seismic

Energy Ratio

Landmark GeoProbe

Positive Curvature – time slice

Unbiased accurate structural deformation – positive flexures (highs)

Negative Curvature – time slice

Unbiased accurate structural deformation – negative flexures (lows)

Anisotropic Attributes

Anisotropic/Rock Property Attributes

Anisotropy

- 1. Elliptical Inversion using P-wave Interval Velocities
- 2. Time differentials from Shear waves (3 comp)

Rock Properties

1. Lambda*Rho Mu *Rho

Density and Orientation of Micro-fractures Physical Basis

Velocities dependence on fractures' direction.

Difference between fast and slow velocities (anisotropy) is a measure of fracture density

Elliptical Inversion (EI) to estimate anisotropy

Automatic Velocity Picking

Time Slice: 680 ms

Elliptical Inversion

Inline

Azimuth co-rendered with Stack

Co-rendered Azimuth/Anisotropy - Positive Curvature

Anisotropic/Rock Property Attributes

Anisotropy

- 1. Elliptical Inversion using P-wave Interval Velocities
- 2. Time differentials from Shear waves (3 comp)

Rock Properties

1. Lambda*Rho Mu *Rho

Cumulative Time Differences

PS1 Stack

Absolute Interval Anisotropy

PS1 Stack

Anisotropic/Rock Property Attributes

Anisotropy

- 1. Elliptical Inversion using P-wave Interval Velocities
- 2. Time differentials from Shear waves (3 comp)

Rock Properties

1. Lambda*Rho Mu *Rho

Cross-plot from Seismic

Lambda*Rho ($\lambda \rho$)

Mu*Rho (μρ)

Conclusions

3D seismic data *will* contribute significantly to the understanding of the Marcellus

Geophysical analysis/evaluation, although in the early stages, looks very *promising* for optimizing well locations

The Marcellus Shale Revealed with Full Azimuth 3D Multi-Component Seismic Data

Acknowledgements

Jim Gaiser
Alvaro Chaveste
Richard Vern

Martin Stupel