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Summary 
 

 3D seismic data will contribute significantly to the understanding of the Marcellus. 
 

 Geophysical analysis/evaluation, although in the early stages, looks very promising for optimizing well locations. 
 

References 
 
Engelder T., 2008, Structural geology of the Marcellus and other Devonian gas shales: Geological conundrums involving joints, layer-
parallel shortening strain, and the contemporary tectonic stress field: Field Guidebook for Pittsburgh Association of Petroleum Geologists 
Field Trip, September 12-13, 2008, and AAPG Eastern Section Meeting Field Trip, October 11-12, 2008, 91 p. 
 
Piotrowski, R.G., and J.A. Harper, 1979, Black shale and sandstone facies of the Devonian “Catskill” clastic wedge in the subsurface of 
western Pennsylvania: US Department of Energy, Eastern Gas Shales Project, Morgantown Energy Technology Center, Morgantown, West 
Virginia, EGSP Series 13, 40 p. 

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.



The Marcellus Shale Revealed with Full 
Azimuth 3D Multi-Component Seismic Data.

By 

Tony Rebec, Jim Gaiser, Alvaro Chaveste and Richard Vern, 
Geokinetics, Houston.



- Introduction to the Marcellus Shale/data

- Vertical Calibration & Resolution

- Spatial Resolution & Geometric Attributes

- Anisotropic/Rock  Property Attributes

- Conclusions

The Marcellus Shale Revealed with Full 
Azimuth 3D Multi-Component Seismic 

Data.



United States Shale Gas Plays

500Tcf



Generalized Geologic Cross-Section of 
Catskill Delta Magna Facies



Marcellus Shale – Depth & Isopach Maps
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Zeroing in on the Marcellus Shale Play in Pennsylvania with High Fidelity 3D Full 
Azimuth Surface Seismic Data Including Simultaneous Multi-Component  3D data for 
Calibration and Identification of Fracture Sweet Spots. (Data not vertically corrected 
for velocity differentials)
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Vertical Calibration/Resolution 
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Spatial Resolution/Geometric Attributes 
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J1 & J2 Fracture Sets in Marcellus
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Natural gas chimneys in black shale 
showing cross fold J2 joints
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Positive Curvature

Bradford & Mehoopany 3D

Seismic Attributes

Unbiased accurate structural deformation – positive flexures (highs)
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Unbiased accurate structural deformation – negative flexures (lows)

time slice

Negative Curvature – time slice



Anisotropic Attributes 



Anisotropic/Rock Property Attributes 

Anisotropy

1. Elliptical Inversion using P-wave Interval Velocities

2. Time differentials from Shear waves (3 comp)

Rock Properties

1.    Lambda*Rho  Mu *Rho



Density and Orientation of Micro-fractures
Physical Basis

Velocities dependence on fractures’ direction.
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Time Slice: 680 ms
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Elliptical Inversion

Inline

Azimuth  co-rendered with Stack
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Co-rendered Azimuth/Anisotropy  - Positive Curvature 

Azimuth

Anisotropy

J1 – “Maintains ENE orientation regardless 
of location relative to the oroclinal bends”

J2 - “In the Valley and Ridge, J2 is found 
normal to fold axes…”

Engelder, T. “Structural geology of the Marcellus and 

other Devonian gas shales”



Anisotropic/Rock Property Attributes 

Anisotropy

1. Elliptical Inversion using P-wave Interval Velocities

2. Time differentials from Shear waves (3 comp)

Rock Properties

1. Lambda*Rho  Mu *Rho
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PS2 to PS1 Registration
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Anisotropic/Rock Property Attributes 

Anisotropy

1. Elliptical Inversion using P-wave Interval Velocities

2. Time differentials from Shear waves (3 comp)

Rock Properties

1.    Lambda*Rho  Mu *Rho
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Density Density

Lambda*Rho (lr) Mu*Rho (mr)

Low density ~ high TOC



Conclusions

3D seismic data will contribute significantly to 
the  understanding of the Marcellus

Geophysical analysis/evaluation, although in the 
early stages, looks very promising for optimizing 
well locations
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