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Abstract

The organic-rich mudstone facies of the late Jurassic Haynesville Formation were deposited under arid climatic conditions in a
restricted instrashelf basin on the evolving Gulf Coast passive margin. A high-resolution (< 2 feet sampling) whole-rock elemental
geochemical study was performed on cored wells from across the basin in order to: 1) establish a chemostratigraphic zonation that
could be integrated with conventional data, 2) assess depositional conditions effective in concentrating organic matter, and 3) assess
provenance of siliciclastic input versus carbonate input.

The Haynesville “Shale” can be broadly divided into three correlative chemostratigraphic packages, termed here lower, middle and
upper Haynesville. The lower and middle Haynesville consist of silty mudstone facies with TOC values up to 5%, but are
differentiated by their concentrations of V, Ni, U, S, As, and Mo. Higher concentrations of these elements in the lower Haynesville
indicate bottom waters during deposition were both dysoxic and oxic, with periods of true anoxia and euxinia. The upper Haynesville
is more calcareous, with two to three carbonate-rich cycles represented, and relatively low trace metal content. In the middle and
upper Haynesville, higher TOC values sometimes correspond to peaks in carbonate cycles, and sometimes to clastic maxima.
Mechanisms of organic-matter enrichment appear to have varied over time in the Haynesville, representing a complex interplay of
carbonate productivity, clastic input, variable burial rates, and variable bottom water anoxia and euxinia.
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A distinctive transition zone to the lower Bossier occurs above the upper Haynesville chemostratigraphic package, and is
characterized by the presence of two to three widespread dolomitic beds. TOC and redox-sensitive trace metals generally drop to
“average shale” levels above this zone, and a subtle but distinctive shift in immobile trace element composition indicates a slightly
different provenance.
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As part of an integrated program to characterize the Haynesville Shale, a high-resolution whole-
rock elemental study was conducted on 1450 core samples from 10 wells across the play area.
The average spacing for core samples ranged from 1.7 to 2.5 feet. In most wells, the top of the
underlying “Haynesville Limestone” and the base of the overlying Bossier Shale were sampled
also. Data was acquired for 53 elements using a combination of inductively-coupled plasma (ICP)
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Elemental Affinities

Elemental data can contribute to a better understanding of the Haynesville Shale when the relationships between elements are
understood. It is also essential to relate the elements to the minerals that control their abundance, and to the processes that
produce and modify the mineralogy. Principal components analysis (PCA) is a valuable tool that can help elucidate the various
relationships. Shown below are results of PCA analysis on all or part of the Haynesville-Bossier elemental data set. The influence
of dysoxic, anoxic, and sulfidic conditions can be readily inferred from the relative positions of V, Ni, Mo, U, S, Zn and Cu.
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The Zr/Nb ratio appears to be a proxy for cycles of relatively silty detritus entering the Haynesville basin from the west and

northwest, even though the total terrigeneous influx (SiO; + TiO; + Al,O3 + NayO + K>0) shows only a slow graudual increase
during deposition of Packages 1-3. The cycles are more numerous and better developed in the western study wells, and are
difficult to recognize in the easternmost study wells.
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Paleoenvironmental Indicators

Estimated Distribution of Anoxia Across Haynesville Play Area Based on Integrated Elemental Proxies
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It is well established that U and most transition metals (primarily V and Ni, but also Co, Cu, and Zn) show elevated
concentrations in organic-rich shales. The enrichments are due to the redox behavior of these elements in the dysoxic to
anoxic bottom-water and pore-fluid conditions that usually accompany organic matter accumulation and preservation.
Mo is often elevated as well, mostly incorporated into sulfide phases and sulphurized organic matter, and its occurrence is
related to euxinic as well as anoxic conditions.

In order to estimate areal and vertical distribution of anoxic and euxinic conditions in the Haynesville shale, elemental
ratios employed by previous workers investigating ancient black shales and modern anoxic sediments were applied to
the studied core samples. The maps below show time slice averages for three key ratios. The cross-section at left shows
the vertical distribution of the weighted and summed ratios. It is clear fom these indicators that persistent anoxia was
better developed in the eastern part of the study area throughout Haynesville time.
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Paleoenvironmental Indicators Provenance

from carbonate, CaO was not used in the CIA assessment.
Higher values of CIA indicate greater degrees of weathering.

for hospitality and assistance while sampling several of the cores
Zr /10 Th used in this study.
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