Sleipner Fluid Dynamics*
(Fluid Dynamics of the Hydrostatic Offshore Conditions at the Sleipner Site [Buoyant Behavior of CO₂])

Bert van der Meer¹

Search and Discovery Article #80111 (2010)
Posted October 14, 2010

*Adapted from oral presentation at Geosciences Technology Workshop, “Carbon Capture and Sequestration: New Developments and Applications, Case Studies, Lessons Learned,” Golden, CO, August 10-12, 2010

¹Senior reservoir Engineer, TNO Built Environment and Geosciences, Princetonlaan 6, 3508 TA Utrecht - The Netherlands (Bert.vanderMeer@tno.nl)

Key Point

The pressure gradients are the main driving force for CO₂ migration under hydrostatic, and therefore buoyant, conditions.

References

Utsira Sandstone Order of Magnitude

Total surface 26,000 km²
Sleipner Site

Courtesy StatoilHydro

Golden, Tuesday, Aug. 10, 2010
Introduction (Sleipner)

Basic Data

- Aquifer
- shallow (800 m SS)
- Thickness 200-250 m
- Temperature ~40 °C
- Hydrostatic (80 bar)
- High permeable (D)
- Extremely large (26,000 Km²)
- Restricted test site
- Injection ~ 1Mt/y so far ~11 Mt
- Injection on temperature control
Sleipner 4D seismic monitoring

Top reservoir

1 km

1994

1999

2001

Injection point

 Courtesy CO2STORE Project
Seismic monitoring (4-D)

2001 2004 2006
Basic Rule - RE - pressure distribution

- The pressure in any part of the subsurface is equal to the weight of the overburden column.
Basic Rule - RE - pressure distribution

- The pressure in any part of the subsurface is equal to the weight of the overburden column.
Pressure Status

• Result: Hydrostatic in the whole formation

Vertical Equilibrium
Carbon Dioxide

- Density

![Graph showing CO2 density in kg/m³ vs. pressure in bar]

- **Critical Point:**
 - Pressure: 73.773 bar
 - Temperature: 30.98 °C
 - Density: 467.6 kg/m³

- **Triple Point:**
 - Pressure: 5.18 bar
 - Temperature: -58.56 °C
 - Density: 1178.5 kg/m³

- **Reference:**
 - NIST generated data, based upon:
Carbon Dioxide

- Critical phases and density

CO₂ density

- **Triple point:**
 - -56.6 °C
 - 5.18 bar
 - 1135.8 kg/m³

- **Critical point:**
 - 73.8 bar
 - 30.98 °C
 - 467.6 kg/m³

- **CO₂ density**
 - [1 bar, 0 °C] = 1.9783 [kg/m³]
 - [1 atm, 15 °C] = 1.8684 [kg/m³]

Phases:

- **Liquid phase**
 - T < 30.98 °C

- **Liquid - vapor phase**
 - Temperature lower

- **Vapor phase**
 - Temperature higher

- **Supercritical fluid phase**
 - P > 73.8 bar
 - T > 30.98 °C

Graph:

- CO₂ density in kg/m³
- Temperature lower
- Temperature higher

Axes:
- Pressure in bar
- CO₂ density in kg/m³
Carbon Dioxide

- Solubility in water

<table>
<thead>
<tr>
<th>water salinity in NaCl percentage</th>
<th>solubility fraction compared with pure water</th>
<th>standard deviation due to P-T-variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5.0</td>
<td>.838</td>
<td>0.012</td>
</tr>
<tr>
<td>10.0</td>
<td>.709</td>
<td>0.020</td>
</tr>
<tr>
<td>15.0</td>
<td>.609</td>
<td>0.032</td>
</tr>
<tr>
<td>20.0</td>
<td>.525</td>
<td>0.031</td>
</tr>
<tr>
<td>25.0</td>
<td>.453</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Reduction of solubility of CO₂ into saline water
Archimedes principle

- Buoyancy = weight of displaced fluid

\[F_d = 500 \text{ Kg/m}^3 \times 1 \text{ m}^3 \]

Resulting UPWARDS force is 500 kg

\[F_u = 1000 \text{ Kg/m}^3 \times 1 \text{ m}^3 \]
Archimedes principle

- Total effect =

Gravity segregation

Natural Gas

CO2

Oil

Water
Carbon Dioxide

(from: IPCC, 2005: Special Report on Carbon Dioxide Capture and Storage.)
Carbon Dioxide in Sleipner

- Store deeper than 800 m (>80 bar, ~35 °C, Density ~700 Kg/m³)
- CO₂ super-critical (as a gas with a liquid density)
- Lighter than formation water (strong buoyancy forces)
 - Sleipner clearly upwards movement of CO₂
- CO₂ soluble in water
- Water soluble in CO₂
Sleipner CO₂ Storage Result

- Plume of free CO₂
- Contours of estimated CO₂ solubility

Time = 1827.00000 days
Questions