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Abstract

Deepwater siliciclastic sands were deposited by accumulations of external clastic materials carried by turbidite flows from shoreface
or slope areas to the basins. However, whether the concepts of classic sequence stratigraphy model developed from relative coastal
onlap and offlap can be applied to deepwater environment is still an issue of open debate, mainly because the magnitude of sea-level
fluctuation in a typical third order cycle is much less than the total water depth of most deepwater basins. This paper presents a case
study from a Gulf of Mexico deepwater reservoir currently under development to investigate the impact of relative sea level and
sediment input in the development of submarine lobe system. A chronostratigraphic framework was constructed by integrating
biostratigraphic data with regional seismic mapping using amplitude volumes. The framework was verified by quantitative analysis of
petrographic, geochemical, and pressure data, and correlated to the GOM sequence chart. The top boundary of each sequence is
capped by a shale interval that serves as the vertical barrier for flows, and limits the interval deposition of multi-sand zones, each with
unique pressure trend, and representing subsequence deposition at higher frequencies. Subsequence deposition of reservoir scales was
accomplished by two major processes, downlapping and backstepping, as revealed by investigation on seismic acoustic impedance
(AI) volumes. The resultant depositional model allows us to successfully predict the occurrence of sand depositional events during the
development drilling. We conclude that classic sequence stratigraphic concepts can be applied in deepwater turbidite environment in
order to construct a chronostratigraphic framework, while by applying advanced seismic technology, profound lithostratigraphic
correlation within each 3rd order sequence can be performed to characterize the pattern of flow unit distribution, greatly enhancing the
effects of reservoir modeling on field development.
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Turbidite Deposition Process and Its Link to
Sequence Stratigraphy Framework

¢ The issue:

— Need for predictive reservoir models in deep-water reservoir
development

= Reservoir connectivity / disconnectivity
» Field development design / completion scenario

¢ The questions:

— Can concepts of classic sequence stratigraphy model be applied to
deepwater environment?

— If so, can an ad hoc depositional model be constructed based on
first-order principles?

— Is the model consistent with an integrated dataset?

¢ The approaches:

— General model to specific field study



General Sequence Stratigraphy Model and Systems Tracts
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Notes by Presenter (for previous slide):

System tracts consist of a contemporaneous linked set of EOD’s. For example: clastic fluvial drainage basin, delta, and offshore bars (Mississippi

River, delta) or carbonate system (Great Bahamas Bank).

As relative sea level changes, how do these environments respond? As the EOD’s produce and accumulate sediment in short-term cycles, the stratal

packages stack and track the long-term sea level change, from LST to TST to HST.



Basin-floor sand deposits?
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An Alternative Model

A. On-set of sea-level fall Sea-level curve/cycle position
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Case Study: Post-Drilling Pressure Trends
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Well Log Sequence Stratigraphy: The Bounding Surfaces for Reservoir Model
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Major reservoir sand packages separated by capping shale intervals

Al water
Al water

2 \<B\
AlA

W 02 o 20

¢
GR1 |™ JlRT 1|l

SB = Sequence Boundary

MMMM“WW@"V Ll

9 3 8 2
s 1| = A2 sl =l | | s

= b ] 3

! N Il *‘E o

; G I

3 : | 2k {‘E"‘l

£ f g—— 19100p4 | - B 19100 - ——|

Z ™ T BRSNS a AlA

s N DN I s I AA
imam\g ater || |[K\ p| 2 ﬁ, E %

Fimian Ne——>— z ZA%)

EAL| B miS,,,w ater ml = oo

- ™ § A6 Wat %N Z [ -

19500 = wof,  AD pater 19500 195001
- 2R 3 i %
B2B B T c .
el =T —s8 > T
19700 {1 19700 s | % {19700 A

é ,t!;,, ,,B A B B 2A é |

2 19800 = 19800 — 9 .

g h 55 | :19800 4?
ARSIy ‘f%:m \\se\ %L AT 1
% i 2 | < T | £c1A 5

C o AR DUB | [ 3 i (| = dophk | 3

2 ] I EINE St

LA L& = =

é 20300 1" — % -1 %‘E

Nl - N 5| %

E Y 24
g > _§ | = > |
= 4
— — ; i §

H T-~~LL Z 3

F4 Z " SB - gy

= | % Y e T 1

% iy > | [

%] ] é%
“““““ F= 2 -SB __ = ] HEd
,,y ___________ .|

3 =

k,g 4

2007-2009 i ﬁ
Pressure Depletion =
B2A/B2B: 65 psi 2 = |
C1A: 55 psi é

J
s

C St

jab

20100

20200

w«wmww[ﬁ“;’ et N

I

| N N MANNGA, RNANH

20300

Salt

10



Major reservoir sand packages separated by capping shale intervals
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Deep Water Turbidite Deposition Process
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Deep Water Turbidite Deposition Process
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Post-Drill Pressure Trends
with Stratigraphic Zonation
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Post-Drill Pressure Trends
with Stratigraphic Zonation
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Conceptual Reservoir Connectivity Model
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Depositional Process: A Quick Thought
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Summary Remarks

*

Presented a conceptual, ad hoc model for deepwater
depositional processes

A GOM field development case study consistent with the model
— Reservoir connectivity

— Field development / completion scenarios

General sequence stratigraphy concepts can be applied to
deepwater reservoir modeling
— Stacking patterns determined by relative sea-level fluctuation and sediment
input

Deepwater basin (including mini-basins) deposition can be
attributed to two processes:

— Basinward downlapping during falling period (forced-regression)
— Landward “backstepping” during rising stage (transgression)

Integrating well logs, cores, paleo, geochem, seismic (amplitude
& Al volumes), pressure and other reservoir property data is the
key for success





