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Abstract 
 
Natural fracture systems commonly act as an important control on the production of hydrocarbons from carbonate reservoirs. In the 
subsurface, significant enhancement of fracture models can be gained through the study of appropriate outcrop analogues (i.e. fracture 
orientation, spacing, height, connectivity etc.). However, a major bottleneck in the utilization of outcrop data is the time required for 
the collection of statistically meaningful fracture data from geological field work and/or remote sensing data. In order to eliminate this 
bottleneck we have successfully adapted 3D seismic technologies, originally developed for automated fault extraction, for the 
automated extraction of bedding and fracture data from a range of different digital remote sensing data types. The results derived 
from automatic analysis of the remote sensing data have been independently quality-controlled using traditional outcrop-based field 
studies on world-class carbonate exposures (USA, Europe, Middle East). The analyzed data include ground-based and airborne 
LIDAR-derived photorealistic models and orthorectified Quickbird satellite imagery combined with satellite-derived digital elevation 
models. Data are derived from surface surveys and also subsurface tunnel surveys. The examples have been chosen in order to 1) 
capture variability in terms of fractured carbonate reservoir types and structural setting and 2) to develop and prove the technology 
using a range of remote sensing data types and different data qualities. We contend that the research has led to development of a 
rapid and robust method that allows for the extraction of statistically representative fracture populations. The new technology frees the 
structural geologist from laborious digitizing work, and provides access to a plethora of relevant fracture data. The technology 
therefore allows the geologist to better focus on the interpretation and analysis of relevant outcrop analogue data in order to better 
parameterize the building of subsurface fracture models. 

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.
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Objectives

• Rationale

• Photorealistic models, purpose specific

• Method Overview

• Independent QC, results evaluation

• Conclusions, directions

LIDAR/Mesh - Vector

Image – Ant tracking
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Business Driver - Rationale
• Middle East:- Fractured carbonate reservoirs intervals exposed only a few km 

from producing field/discoveries.  

• But:- Exceptional exposures, but are very steep, difficult to work on and therefore 
extract meaningful quantitative data (i.e. fracture stratigraphy). 

Mishrif, Middle East

Presenter’s Notes:

1. StatoilHydro geoscientists have had the opportunity to characterize fractured and diagemetically-modified carbonate reservoirs at on exceptional 
exposures that are located only a few kilometres from major discoveries and producing fields in the Middle east.

2. A major challenge related to this work was the scale and steepness of the exposures, making it difficult to collect large quantoties of quantitative 
data.  The images show fracture heterogeneity exposed on large bedding planes and also in steep section.  The fractures clealy vary in 
orientation between different reseervoir layers.

3. The fracture density also changes between reservoir layers.  However, the density differences are based on 2D interpretation from photographs, 
and contain to diectional information.

4. Fracture map (50 m squares) or Fracture map illustrates a grid of 50 m squares.

5. The primary aim of the project, initiated in 2004, was to develop new techniques for the automated extraction of quantitative fracture data from 
outcrop analogues.  The company is studying outcrops where the reservoir section is exposed only a few kilometres away form the prodicing 
fields, and show comparable fracturing in terms of both orientation and relationships to bedding/bed sets.  Unfortunately despite superb 
exposures, access is limited and so the actuay capacity of the geologist to measure large numbers of stastically- represensentative quantitative 
fracture data is limited.
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Business Driver - Rationale

Mishrif, Middle East

• Objective:- To develop rigorous automated techniques to rapidly and accurately 
extract quantitative fracture data from outcrop analogue data.

• Initiative:- 2004 sought collaboration with Schlumberger to adapt ’ant tracking’
seismic technologies to work on digital outcrop datasets.

Presenter’s Notes:

1. StatoilHydro geoscientists have had the opportunity to characterize fractured and diagemetically-modified carbonate reservoirs at on exceptional 
exposures that are located only a few kilometres from major discoveries and producing fields in the Middle east.

2. A major challenge related to this work was the scale and steepness of the exposures, making it difficult to collect large quantoties of quantitative 
data.  The images show fracture heterogeneity exposed on large bedding planes and also in steep section.  The fractures clealy vary in 
orientation between different reseervoir layers.

3. The fracture density also changes between reservoir layers.  However, the density differences are based on 2D interpretation from photographs, 
and contain to diectional information.

4. Fracture map (50 m squares) or Fracture map illustrates a grid of 50 m squares.

5. The primary aim of the project, initiated in 2004, was to develop new techniques for the automated extraction of quantitative fracture data from 
outcrop analogues.  The company is studying outcrops where the reservoir section is exposed only a few kilometres away form the prodicing 
fields, and show comparable fracturing in terms of both orientation and relationships to bedding/bed sets.  Unfortunately despite superb 
exposures, access is limited and so the actuay capacity of the geologist to measure large numbers of stastically- represensentative quantitative 
fracture data is limited.
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LIDAR-Derived Photorealsitic Models

• Laser scans outcrop at 10’s of millions of 
points

• Adaptive intelligent mesh made from scan –
reduces data size by c. 90%

• Photo’s mapped onto this with cm-scale 
accuracy

10 m

10 m
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Data: Photorealistic Models
• Same data, 3 models with different resolution

360 x 270 m

Main stratigraphic surfacesMain stratigraphic surfaces Stratigraphic detail, Karst mapping, faciesStratigraphic detail, Karst mapping, facies

Low resolution Medium resolution

High resolution

Fracture mappingFracture mapping
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Data: Photorealistic Models
• Same data, 3 models with different resolution

360 x 270 m

Main stratigraphic surfacesMain stratigraphic surfaces Stratigraphic detail, Karst mapping, faciesStratigraphic detail, Karst mapping, facies

Low resolution Medium resolution

Fracture mappingFracture mapping

LIDAR – c 10 million points

Each image (4500 x 3000 = 13 500 000)

7 images used
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Image Resolution at 0.7-1.1 km (13.5 mpixels)

22
.5

 m
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Image Resolution at 0.7-1.1 km (13.5 mpixels)

22
.5

 m

< 2 cm/pixel
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Results: Fracture mapping
Original 2D high resolution image

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Ant Tracking

Image  World transform

Images

High resolution
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Results: Fracture mapping
2D image curvature

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Ant Tracking

Image  World transform

Images

High resolution
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Results: Fracture Mapping
2D iterative Ant Tracking

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Ant Tracking - 1

Image  World transform

Images

Note horizontal tracking shown

High resolution
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Results: Fracture Mapping 
2D iterative Ant Tracking

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Ant Tracking - 2

Image  World transform

Images

Note horizontal tracking shown

High resolution
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Results: Fracture Mapping 
2DImage      World Transform

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Image  World transform

Images

Ant Tracking

10 m

• Note:- intersection of fracture/bedding with surface topography retained as a confidence factor of the 
planes strike and dip
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Results: Fracture mapping 
Ant-tracks –image analysis

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Ant Tracking

Image  World transform

Images

137              64               192

Fracture no       Dip        Dip direction
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High resolution
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Field Data vs Ant Track Data
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Model 3 - Fracture

Ant Tracking: Quality Control - Mesh

4.7
5 m

Model 1 - Stratigraphy
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Mechanical Stratigraphy

• Final LIDAR study phase:- develop and 
qc fracture-bedding relationships 
’mechanical stratigraphy’

• 2007 field study (blind from 
Schlumberger) vs fully automated result 
– minor discrepencies

Field data Automated result
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Results: Fracture mapping
Y-component of normal vector field

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Ant Tracking

Image  World transform

Images

LIDAR - Medium/low resolution
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Results: Fracture mapping
Y-component of normal vector field

LIDAR point cloud 3D properties

Edge enhancing filtering

Normal 
vectors

Distance
to scene

LIDAR
intensity

World  Image transform

Interpolation to image grid

3D Interpretation

Ant Tracking

Image  World transform

Images

Vector analysis

Centre points

Best fit planes

Accuracy from mesh 
determined by 

photorealistic model inputs
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Mesh analysis 
2 clusters

Field Data vs Mesh Analysis - 1

Superimposition 
on data 
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Field Data vs Mesh Analysis - 2

Mesh analysis – main cluster 
Difffers from field data
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Field Data vs Mesh Analysis - 2

Mesh analysis – main cluster 
Difffers from field data
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Field Data vs Mesh Analysis - 3

• Why the contrast 
between field data 
and vector analysis 

– are the vector 
data unreilable?

• No – these sets exist in specific 
parts of the section
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Field vs Automated Data Distribution
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Field vs Automated Data Distribution
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Field vs Automated Data Distribution
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Field vs Automated Data Distribution
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Results, Conclusions

• Different orientation, scales of data 
obtained from image analysis and 
vector analysis of LIDAR/mesh data –
complimentary

LIDAR/Mesh - Vector

Image – Ant tracking
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LIDAR/Mesh - Vector

Image – Ant tracking

• Different orientation, scales of data 
obtained from image analysis and 
vector analysis of LIDAR/mesh data –
complimentary

• Limitations and strengths of the 
technology identified

− Image quality, illumination, 
weatherning

− Mesh quality, cliff topology
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Results, Conclusions

• Different orientation, scales of data 
obtained from image analysis and 
vector analysis of LIDAR/mesh data –
complimentary

LIDAR/Mesh - Vector

Image – Ant tracking

• Different orientation, scales of data 
obtained from image analysis and 
vector analysis of LIDAR/mesh data –
complimentary

• Limitations and strengths of the 
technology identified

− Image quality, illumination, 
weatherning

− Mesh quality, cliff topology

• Different orientation, scales of data 
obtained from image analysis and 
vector analysis of LIDAR/mesh data –
complimentary

• Limitations and strengths of the 
technology identified

− Image quality, illumination, 
weatherning

− Mesh quality, cliff topology

• Blind testing & independent QC of 
study area
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Conclusions

• Technique is complimentary to, not a 
replacement for field geology

• There is a bias in both field and 
automated datasets  

• The automated results force you to re-
evaluate field collected data and to 
develop better fracture models
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Study Areas, Data Types

1. Guadalupe Mountains, USA
- Ground Based LIDAR, 

photorealitsic model

2. Somerset, England, Famous 
Bench

- Ground-based LIDAR, 
- Aerial + ground-based 

photorealistic models

3. Mishrif, Middle East
- Ground basd LIDAR, 8 m 

tunnels through anticline,
- Integrated with orthorectified 

Quickbird data

100’s m km Multi kmkm Multi km
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Study Areas, Data Types

1. Guadalupe Mountains, USA
- Ground Based LIDAR, 

photorealitsic model

2. Somerset, England, Famous 
Bench

- Ground-based LIDAR, 
- Aerial + ground-based 

photorealistic models

3. Mishrif, Middle East
- Ground basd LIDAR, 8 m 

tunnels through anticline,
- Integrated with orthorectified 

Quickbird data

100’s m km Multi kmkm Multi kmHigh contrast High contrast High +low contrast
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