Abstract

In structurally complex areas, seismic interpretation can be misled by wrongly interpreted well data. A common approach in the oil industry can be summarized by the Spanish sentence “pozo mata sismica” meaning that data from a well must prevail in a seismic interpretation. A major problem arises when well-based interpretation is taken as data; a missing section is the observation; calling it a “normal fault” is an interpretation. A series of examples will show, in various structural settings, numerous cases of missing sections that cannot be attributed to normal faulting. All field names in the text are from Venezuela if not otherwise specified.

The easiest recognizable misinterpretation occurs where wells have missing sections juxtaposed to wells with coeval massive sands; with enough well control additional support comes from recognizing the typical rhomboidal-shaped blocks; e.g., Dunlin Field, UK. Synsedimentary activity of horst blocks in the middle of major deposition centers (e.g., Brent delta) is responsible for such occurrences.

Many tools either alone or combined, can be used to diagnose problematic missing sections; e.g., hydrocarbon-column anomalies associated with fault-plane mapping, abnormal RFT pressure trends, detailed fault-throw map or perfectly identical TVDss depths of fault cuts in different stratigraphic units.

Unusual approaches can also be successful at recognizing misinterpreted normal faults, as in the Lama Field: the TDs of every well that failed to reach their targeted depths were analyzed by plotting their coordinates in 3-D. This revealed the existence of three
previously unrecognized steeply dipping reverse faults that only one third of the wells had been able to penetrate; each of the latter
group showed missing sections where crossing these faults.

While 3-D seismic is the norm, 2-D lines can be invaluable in better defining the tectonic style of very complex areas. Large amount
of hydrocarbons can be present below faults which have been obliquely reactivated and which appear at first glance to have the
geometry of normal faults (e.g., Western Canada Foothills).

Implications for the examples cited above range from redesign of water injection wells for pressure support (Lama Field) to major
bypassed pay zone (Santa Barbara Field), change in reserve estimates (Dunlin) and finally to a new hydrocarbon discovery (near
Bosque Field).

Selected References

Chatellier, J-Y., and Zambrano, J., 2007, A multidisciplinary 4D integration delivers a reliable reservoir model for the Santa Barbara
Field, Venezuela: Data Fusion Workshop, SEG-AAPG-SPE, Vancouver, October, 2007

Chatellier, J-Y., and Porras, C., 2004, The Multiple Bischke Plot Analysis, a Simple and powerful graphic tool for integrated

Chatellier, J-Y., de Sifontes, R., Mijares, O., and Muñoz, P., 1999, Geological and production problems solved by recognizing the
strike slip component on reverse faults, VLA-31, Lake Maracaibo, Venezuela: SPE Annual Technical Conference, Houston, SPE No. 56558
Abstract

In structurally complex areas, seismic interpretation can be misled by wrongly interpreted well data. A common approach in the oil industry can be summarized by the Spanish sentence “pozo mata sismica” meaning that data from a well must prevail in a seismic interpretation. A major problem arises when well-based interpretation is taken as data; a missing section is the observation, calling it a normal fault is an interpretation. A series of examples will show, in various structural settings, numerous cases of missing sections that cannot be attributed to normal faulting. All field names in the text are from Venezuela if not otherwise specified.

The easiest recognizable misinterpretation occurs where wells have missing sections juxtaposed to wells with coeval massive sands; with enough well control additional support comes from recognizing rhomboidal shaped blocks as in the Upper Ness E of the Dunlin Field - UK. Log facies maps are most effective at indicating these occurrences because of the patterns on the maps; this also works well in compressive structural settings as in one Oligocene unit of El Furrial Field. Synsedimentary activity of horsts in the middle of major deposition centers (e.g., Brent delta) is responsible for such occurrences.

An unusual approach was successful at recognizing misinterpreted normal faults in the Lama Field: the TDs of every well that failed to reach its targeted depth were analyzed by plotting their coordinates in 3-D. This revealed the existence of three major steeply dipping reverse faults that only one third of the wells had been able to penetrate; each of the latter showed missing sections. Oblique slip associated with these Riedel Shears has been invoked for the missing section along reverse faults.

In the Western part of El Furrial Trend, different tools either alone or combined, were used to diagnose problematic missing sections; e.g., hydrocarbon column anomalies associated with fault-plane mapping, abnormal RFT pressure trends, detailed fault-throw map or perfectly identical TVDss depths of fault cuts in different stratigraphic units. When dealing with problematic missing sections, core observations may also help significantly as in the Carlo Field where timing and geometry of deformation bands revealed by a diagenetic study indicate a multiphase complex tectonic history with rotation of transport direction.

While 3-D seismic is the norm, 2-D lines can be invaluable in defining the tectonic style in very complex areas. Large amount of hydrocarbons can be present below faults which have been obliquely reactivated and which appear at first glance to have the geometry of normal faults (e.g., Western Canada Foothills).

Implications for the examples cited above range from redesign of water injection wells for pressure support (Lama Field) to major bypassed pay zone (Santa Barbara Field) and finally to a new hydrocarbon discovery (near Bosque Field).
Observations

Furrial Field
Venezuela
OGIP = 7.5 Billion bbls

Dunlin Field
UK North Sea
OGIP = 0.827 Billion bbls

Synsedimentary tectonic activity creating havoc

Best blocky sands are missing at the same stratigraphic level

Missing sections commonly misinterpreted as being associated with normal faults

Lessons

- Major mistakes in **reserve estimates** can be linked to syn-sedimentary tectonics
- Missing sections are often found in horst blocks next to the thickest and best sands of a field
- Development scheme can aim at **sands that do not exist**
- **Blocky sands** next to missing sections should trigger your attention
- Same pattern is usually found at the same stratigraphic level in various neighboring fields
Missing Sections in Strike-Slip Regimes
Example from the Lama Field (Block VLA 31) Lake Maracaibo, Venezuela

Key points
- Oblique slip
- Displaced facies
- MBPA

Observations
- 9 wells with missing sections
- 1 well with a small repeat
- 29 wells not reaching the objective (jamming)
- More than 15 years of water injection has not helped maintain the pressure of the field
- Geological Model is wrong

Multiple Bischke Plot Analysis
- Disagrees with normal faulting
- The stratigraphy of Well 753 is compared to four non-faulted wells
 - Conclusion = the red marker is misinterpreted
- MBPA graphical method allowed confirmation of the position of the faults where missing sections are found; however, the MBPA demonstrates that these are not missing sections but miscorrelations.

3D analysis of all abnormally short TD delivers 3 perfect fault planes
- 6 abnormally short TDs
- 11 abnormally short TDs
- 12 abnormally short TDs
- Each of the fault cut-out fits on one of the three planes defined by the abnormal TD of the wells that did not reach the planned objective (the Guasare Formation)

Lessons
- Lateral motion along faults in strike-slip settings can induce:
 - Missing sections associated with reverse faults
 - Repeats not recognized because the repeats are from different facies
- The Multiple Bischke Plot analysis can help review the stratigraphy
- TDs of jam-terminated wells can indicate the presence of faults

Cross-section of final model
Multiphase Deformation on Low Angle Reverse Faults

Problem 1

Each well on the following maps exhibits **missing sections**
Each was first interpreted as **normal fault**
depths in feet are indicated on map

![Fault planes linking missing sections](image)

Carito Field
Venezuela
OOIP = 6.7 Billion bbls

![Normal Fault Interpretation](image)

Santa Barbara Field
Venezuela
OOIP = 6.1 Billion bbls + OGIP = 21 Tcf
Total = 9.6 Billion BOE

![Fault plane generated by first deformation phase](image)

Lessons

- Planar alignments of fault cut-outs can help identify misinterpretations:
 - Fault planes between 30° and 60° can be associated with multiphase deformation
 - Missing section is obtained by sedimentary sequences gliding obliquely on a preexisting fault plane
- Large untapped hydrocarbon pools are found below such faults (e.g., SBC-116 with 8000 bopd)
- Sealing capacity of these faults is common and can be related to reactivation and cataclasis
Missing Sections Associated with Detachments

Key points
- at same depths
- Pressure problems
- Gradual throw change

Problem 1
Example from Santa Barbara block 3
Missing sections at the **same depth** in every well
Very different units are missing

Santa Barbara Field
Venezuela
Example from Santa Barbara block 1
Detachment as seen on seismic
Missing sections observed (see right)
Note the “Herringbone” pattern

Example from Santa Barbara block 2
Faults with missing sections and faults with repeats
at nearly the **same depth** in every well.
Whereas the sequence of reservoir is 4000 feet thick
These are the only faults interpreted in each of these wells.

Fault throws are gradually changing on a map view.
Very different units are missing

Example from Santa Barbara block 2
Section from 3-D modelling
Footwalls and hangingwalls associated with each fault cut-out
do not exhibit any drag folding
A major detachment is responsible for all of the missing sections
and repeat sections

Lessons
- Missing sections occurring at the **very same depth** are linked to **detachment planes**
 - No drag folding and gradual thickness change is found on either side of the fault
 - Bed dip can be different above and below the fault
- **Pressure data** can be very helpful in determining the depth of the detachments
- **Fault-throw maps** can validate the newly developed geological model
Implications for Hydrocarbon Exploration

Implications for hydrocarbon exploration

Reserves overestimation and far from optimum development scheme (Dunlin and Furrial fields)

Wrong injection scheme
And wrong structural model (Lama Field)

Missing a giant field (Bosque Field North of Santa Barbara Field, block 2)

Misunderstanding of by-passed zones (Santa Barbara Field, block 1)

Best sands are absent on the horsts

Contouring using the new fault pattern

Much by-passed oil below the fault plane

Main lessons

You may want to be aware of:

- Missing sections at the same stratigraphic level in many wells
- Missing sections at the same depth in neighbouring wells
- Missing sections on a well defined plane
- Reservoir pressure problems
- Drilling problems (Jamming)

A few selected references

Acknowledgments

The authors would like to thank Petroleos de Venezuela and Talisman Energy Inc. for permission to present this material. All but one of the examples are taken from various Venezuelan structural settings and were presented in different forms at various meetings; all of these with permission from PDVSA Intevep.