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Abstract

Just over 30 years ago, scientists exploring the global mid-ocean ridge system made the spectacular discovery of black smokers—
hydrothermal chimneys made of metal sulfide minerals that vigorously discharge hot, particulate-laden fluids into the ocean. These chimneys
are the surface manifestation of convection of seawater through the oceanic crust and water-rock reactions that produce hot, hydrothermal
fluids that discharge at the seafloor. This hydrothermal circulation process plays an important role in regulating the chemistry of seawater,
building mineral deposits, and supporting chemosynthetically based ecosystems.

Early studies focused on hydrothermal systems on the fast-spreading East Pacific Rise, where shallow magma lenses beneath the ridge crest
provide heat to drive convection of seawater through the oceanic crust. Ten years later, studies of the slow-spreading Mid-Atlantic Ridge
revealed much larger mineral deposits — a surprising result given the lower magma delivery rate and heat availability.

Through the use of different deep-submergence technologies, this presentation explores the characteristics of vents and their associated
communities along the mid-ocean ridge, and the varying relations between volcanic and tectonic processes at sites on ridges of different
spreading rates. It will focus in particular on how one active hydrothermal system has constructed a large mineral deposit on the Mid-Atlantic
Ridge and how recent experiments at that site have shed light on the role tectonics and faulting play in the evolution of long-lived
hydrothermal systems.
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What Is a Hydrothermal Vent?
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What Is the Relation between Hydrothermal Activity and
Volcanic-Tectonic Relations on MOR?

 VVolcanism and tectonism on the fast-spreading EPR
e The TAG active mound on the slow-spreading MAR
e Seismicity and fluid flow at TAG (STAG) experiment

 Implications for volcanic-tectonic relations and
hydrothermal flow on slow spreading ridges
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Autonomous Underwater Vehicle
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Model for Building the Crust at a Fast-Spreading Ridge
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Model for the Crust at a Slow-Spreading Ridge

At slow-spreading
ridges, magma bodies
are thought to be
ephemeral, cooling
quickly, and no
permanent melt lens
resides within the crust.
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v A 1R The TAG Segment
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The TAG Active Mound:
A BIG mineral deposit!
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Estimated Tonnage of the Active TAG Mound

Total Mass of Sulfide 3.9 x 10° tonnes

Exposed Mound 2.7 x 10°tonnes
Subseafloor Stockwork 1.2 x 10° tonnes

Total Mass of Fe 2.3 x 10° tonnes
Total Mass of Cu 30-60 x 10° tonnes
Total Mass of Zn 15.2 x 103 tonnes

(Note: 1 tonne = 103 kg)



Humphris & Cann (2000)
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Other Results of Chemical Mass Balance Model

e Size of alteration zone (based on Cu budget):
1-2 x 1012 kg (0.4-0.7 km?)

e Heat to drive a 1000 MW hydrothermal system cannot
be supplied from the steady state energy flux from
crustal accretion



The Heat Source at TAG?

L ocation
e |s it In the neovolcanic zone with fluid flow
pathways provided by large faults?

e Are there discrete, off-axis volcanic centers
providing heat locally?

Nature
o Extraction of latent heat from magma chambers?

« Extraction of specific heat from hot rocks across
cracking fronts?



The Seismics at TAG (STAG) Experiment (2003-2004)

Obijectives

- To determine the location of the
heat source for the TAG mound

» To investigate linkages between fluid
flow, seismic activity, and tidal
pressures to understand the hydraulics
of the TAG mound

'‘Components

1 4 oceanographic cruises

1 Microbathymetry map of TAG mound
1 9 months seismicity data on 13 OBS
1 3 seismic refraction lines

1 12 months fluid exit T at 21 sites

9 6 months tidal pressure data




OBS Deployments
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Seismic Refraction Survey
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» 19,232 earthquakes with
maghnitudes 1=M <4 located
(35,000 detected)
» 2 zones of activity:
-- arc around the
eastern wall protrusion
-- parallel to ridge axis
beneath eastern wall
» Focal mechanisms
consistent with:
-- normal faulting around arc
-- antithetic normal faulting
dipping east
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Conclusions about the TAG System

* TAG lies on the hanging wall of a detachment fault that
extends >7 km below the seafloor. The large high velocity
body beneath the TAG active mound Is interpreted to be
lower crustal rocks uplifted by tectonic extension along the
detachment fault.

* The lack of a low velocity zone within the upper 4 km of
crust in the vicinity of the TAG mound indicates the system
extracts thermal energy from deeper crustal regions (>7 km).

* The heat source driving hydrothermal circulation is likely
magmatic intrusions at the spreading axis mined by the fault.

*Hydrothermal systems could be a common feature of the
hanging walls of oceanic detachment faults, which has
Implications for the distribution of hydrothermal activity and
associated thermal and chemical fluxes.



Conclusions

e The distribution of hydrothermal systems along fast-
spreading ridges is controlled dominantly by the presence or
absence of a shallow axial magma chamber:

Magmatic/volcanic control more important than tectonic
processes at fast-spreading ridges.

* The location of hydrothermal systems along slow-spreading
ridges is controlled dominantly by faulting:

Tectonic control is more important in general than
magmatic/volcanic process at slow-spreading ridges.



Detachment Faulting at TAG

Geophysical Evidence
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