Braided River and Avulsive Depositional Systems in the McMurray Formation - LIDAR and Subsurface Data Integration at Syncrude's Aurora North Mine*

Thomas Nardin¹, B. Joan Carter², and Nina E. Bassey³

Search and Discovery Article #30143 (2010)
Posted December 31, 2010

*Adapted from oral presentation at AAPG Conference and Exhibition, Calgary, Alberta, Canada, September 12-15, 2010

1T.R. Nardin Geoscience Consulting, Calgary, Alberta, Under Contract with Imperial Oil Resources (tom.r.nardin@esso.ca)
2Imperial Oil Resources Ltd, Calgary, Alberta
3Mobil Producing Nigeria Unlimited, Lagos, Nigeria

Abstract

The McMurray Formation in the Athabasca area of northeast Alberta represents a world class oil sands resource that is under development using surface mining and in-situ thermal recovery technologies such as steam-assisted gravity drainage (SAGD). The commercial success of these developments is dependent on reservoir quality and heterogeneity, parameters that are closely linked to depositional environment. In 2007, pit exposures at Syncrude’s Aurora North mine, together with closely spaced coreholes, provided an excellent opportunity to study McMurray depositional systems from core to outcrop scale.

Database

The Aurora North study was based on core, gamma ray, dipmeter, and Syncrude lithofacies descriptions from 380 wells with an average spacing of 100 meters. Mine faces were captured using photo-pans and GPS calibrated LIDAR images (laser scans) that enhance the 3D visualization and analysis of outcrop stratigraphy. Rendering the well log curves as a 3D seismic volume (LogVu3D) facilitated stratigraphic interpretation. These data were tied to the regional sequence stratigraphic framework constructed for the northern Athabasca (Nardin et al., 2007) and integrated to develop predictive models for low-sinuosity/braided river and avulsion channel deposits.
Stratigraphy and Facies

The McMurray Formation is a deepening-upward fluvial-estuarine complex deposited within an Early Cretaceous paleo-valley system (Cant and Abrahamson, 1996; Hein and Cotterill, 2006). Deposition was strongly controlled by the structural configuration of the sub-Cretaceous unconformity. Movement along the unconformity during McMurray time increased stratigraphic complexity and augmented the development of high-relief unconformities. Three major sequences are recognized at the Aurora North mine.

Thick low-sinuosity to braided river deposits overlain by a floodplain mudstones, paleosols and coals were deposited within the basal SB100 sequence and are preserved primarily within structural lows above the sub-Cretaceous unconformity. These facies are characterized by high N/G sands dominated by trough and tabular cross beds and intense scouring. Grain sizes range from mL – vcU and sorting is variable. Beds and bedsets are upward-fining. Multi-story, stacked bedsets form bars which, in turn, form barsets and bar-dominated complexes.

The basal section of the overlying SB500 sequence is dominated by similar fluvial deposits whose distribution was controlled by topography created through contemporaneous structural movements and erosion of the SB100 sequence. In the mine, depositional remnants of SB100 paleosols and fluvial deposits are observed to be tilted along the flanks of Devonian structural highs, forming SB500 interfluves.

Subsequent deposition within the SB600 sequence was more strongly influenced by estuarine conditions. Where exposures of the SB600 were observed, the 50-meter thick upward-fining succession consists of avulsion channel and bar complexes. Half-bell, upward-fining gamma-ray log motifs and grain-size trends are similar to those observed in comparably scaled point bars such as those observed at Syncrude's Mildred Lake Mine. However, dipmeter patterns and outcrops demonstrate large-scale cut-and-fill stratal geometries which are interpreted to have formed through avulsion processes. Channel fills are compound and can be described in the context of a stratigraphic hierarchy containing bars, barsets and bar complexes. Fills commonly contain basal sand-prone sub-tidal bars overlain by side-attached longitudinal bars which tend to be mud-prone and highly bioturbated. Longitudinal bars downlap onto the tidal bars.

Mudstone clasts formed during avulsion events are derived from older channel fills and are observed at channel boundaries and downlap surfaces. Barsets are grouped into bar complexes that are capped by coastal plain deposits. The lateral spacing between avulsion channel remnants observed in outcrop is comparable to the 100 meter corehole spacing making it difficult to demonstrate the coevality of individual channels. However, channel and bar complexes are mappable. Within any complex, lithofacies mapping shows that the thickest reservoirs are located up-valley and grain size distributions fine overall in the down-valley direction. It is probable that alluvial architecture changes from one characterized by avulsion down-valley to non-avulsive channels and point bars up-valley.
Conclusions

Using closely-spaced coreholes that are tied to outcrop, this study has provided conceptual models for two distinct depositional systems in the McMurray Formation: low sinuosity to braided river and estuarine avulsion complexes. Together with the large-scale point bar complex described at Syncrude's Mildred Lake Mine (Nardin et al., 2005; Nardin et al., in prep) these analogs can be used to guide subsurface interpretation of similar depositional environments and to facilitate resource characterization, assessments and reservoir modeling at the development scale.

References

Braided River and Avulsive Depositional Systems in the McMurray Formation - LIDAR and Subsurface Data Integration at Syncrude's Aurora North Mine

Thomas Nardin
T.R. Nardin Geoscience Consulting

Joan Carter
Imperial Oil Resources Ltd

Nina Bassey
Mobil Producing Nigeria Unlimited

Acknowledgements:

Trevor Finlayson and Dave Heyser (Syncrude Canada Ltd)
Joseph Azzi, Jerry Beliam and Ryan Phelps (University of Texas at Austin)
Nancy Wilson and Mark Wood (Imperial Oil Resources Ltd)
Study Approach and Themes

Oil sands mines provide laboratories which allow study of the stratigraphy and depositional systems within the McMurray Formation.

Approach

- 3D outcrop exposures tied to closely spaced log and core data at Syncrude’s Aurora North mine
- Data integration and visualization aided by LIDAR scans of mine walls and LogVu3D
- Show observations and interpretations for two depositional systems: Braided river deposits and Large-scale cut and fill channel complexes

Themes

- Importance of syn-depositional structural movements on development of these depositional systems
- Integration of conventional subsurface data with outcrop development of subsurface recognition criteria: Reservoir and non-reservoir distributions and Implications for exploration and development
Aurora North Mine Database

- 2700 coreholes
- 3 km LIDAR scans / photo pans

Database
- 380 coreholes
- GPS Targets

Aurora Mine East Pit & Tailings Pond

Circle pit LIDAR

East wall LIDAR

GPS Targets

- LIDAR study area
- Mine walls
- Roads

500 m

1000 m
McMurray Sequence Stratigraphy and Depositional Systems

[Diagram showing layers and deposits with labels such as Medium Coarse Sand, Fine Sand, Mudstone/Shale, Paleosols, and Coal. The diagram includes scales for 100m and 400m.]
Aurora North Stratigraphy

East Pit - View to Northeast

- Devonian High
- SB100 Sequence
- SB500 Sequence
- SB600 Sequence
- East Wall

Devonian

High SB100 Sequence

Fluvial

Coal

Paleosols

SB500 Sequence

GR Dip Meter

0 10 400 150

SB500

SB100

Base Q

SB100

SB500

Channel Complex

Flood-plain

Braided

Braided

Devonian
Structural Control on Stratigraphy

Structure Sub-Cretaceous Unconformity

Regional Sub-K Structure

Aurora North located along an escarpment at margin of the Bitumount Basin
Syn-Depositional Movement of Sub-Cretaceous Unconformity

Circle Pit - View to Northeast

SB500 Sequence
Fluvial

Devonian High

SB100 Sequence
Paleosols

Onlap and tilting of SB100 sequence along Sub-Cretaceous unconformity and erosion of SB100 sequence by the SB500 unconformity

Kearl Mine Seismic Analogue

LIDAR & Well Locations

Circle Pit

East Wall
SB500 Fluvial - Core and Log Calibration to Outcrop

Circle Pit - View to Northwest

Bar Sets

Base Floodplain Mudstone

Top Coarse-grained, trough cross-beds

Bottom Mudstones

Bottom

Top

75 cm

200210-069

GR

Dip Meter

0 150

0 10 40

SB600 Floodplain

Stacked Bar Sets

SB100/500 Devonian

LIDAR and Well Locations

A

B

Circle Pit

500 m
• Pseudo-3D seismic using GR traces
 - Renders very large well log data sets as 3D volume
 - Enhances visualization of facies changes and depositional trends

• X-Line 33 shows SB500 (green) unconformity structural relief infilled with fluvial sands

• 235 m depth slice images SB500 fluvial sand distribution and interfluves composed of SB100 paleosols
LogVu3D - Depth Slice through SB500 Sequence

McMSB500 Paleogeography
Braided River Complex

SB500 removed by erosion

T96 R10

LIDAR Study Area

SB100 Interfluves

XLN 33

1000 m
• The SB600 succession is up to 55 m thick
• Concave-upward erosional surfaces define channels that incise up to 35 m to a common elevation within SB600 basal sands
• Channels contain distinct stratigraphic units that stack laterally and systematically become younger northward
• Two channel complexes are observed (green and orange) that also young northward
• Each channel complex is overlain by abandonment floodplain deposits along an erosional contact
Succession is upward-thinning / fining overall but also contains upward-coarsening units

Channels have complex fills but commonly have basal sand-prone bars and downlapping mud-prone inclined heterolithic strata (IHS)

IHS dips range from 2 to more than 20 degrees northward (orange complex) and eastward (green complex)

Channel margins and downlap surfaces are depicted by abrupt bed dip and/or azimuth changes

100 m corehole spacing does not completely capture the lateral stratigraphic variability
Subsurface Corehole Calibration to Outcrop

Middle bench is PMB facies in well 0318AA9609 (Laminated to thick-bedded, parallel-bedded, mud-rich, highly bioturbated)

Lenticular / flaser bedded
Muddy bottomset

Floodplain
LIDAR

Downlapping Mudstones
Sub-Tidal Bar
Channel Incisions
SB600 Sequence
Core Lithofacies Calibration to Outcrop

Floodplain paleosols
- Bioturbated floodplain splay
- CO₃ nodules
- Floodplain paleosols

Clasts at base channel
- Mudstone Clasts
- Trough x-bedded fluvial sands
- Clasts

Channel base at dip angle change
- Dip angle and azimuth change at DLS

Dip angle break
- Top
- DLS
- Base channel

Other notes:
- Base floodplain
- North dips
- South dips
- Thick-thin bedding
- Flaser & lenticular bedding
- Downlapping surface
- Base Channel
- Downlapping Mudstone
- Downlapping Mudstone
- SB600
- Gr Dip Meter
- 0318AA9609
- 0 10 400 150

Core Lithofacies Calibration to Outcrop
LogVu3D SB600 Depth Slice

IHS Dip Azimuth

Mud-prone

Sand-prone

SB600 removed by erosion

T96 R10

LIDAR Study Area

1000 m
Key Observations

• Deep, narrow channels with cut and fill architecture
• High spatial frequency
• Tidally influenced deposition with basal bar forms and downlapping IHS that flatten upward
• Channels stack laterally into complexes capped by abandonment deposits
• IHS dip azimuths radiate from central sand body

Model

• Point bar in which repeated and systematic channel incision is common
• Renewed incision possibly triggered by a combination of
 • Partial channel filling
 • Flow diversion
 • Syndepositional movement of the sub-K unconformity
Final Thoughts

• Mine exposures tied to closely spaced corehole data provides a powerful approach to study of McMurray stratigraphy and depositional systems

• Continued exploitation of these data-rich areas can be used to develop subsurface recognition criteria for a variety of facies and depositional environments where well control sparse

• Additional insights into McMurray depositional systems will come from combining mine studies with 3D seismic imaging of depositional and geomorphic systems documented at in-situ developments