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Abstract 

 
Shale gas is a self‐sourced resource in which thermogenic or biogenic hydrocarbon gases are contained within a fine‐grained, organic‐rich, low-
permeability matrix, occurring in free, adsorbed and dissolved states. While no commercial shale‐gas enterprises are currently known outside 
North America, many parts of Europe contain prime targets for shale gas exploration. One of these is the Posidonia Shale (Lias ε) of northern 
Germany. The Posidonia Shale in the Hils Syncline is approximately 35m thick and subcrops at relatively shallow depth over a 500 sq km area. 
It displays a threefold stratigraphic subdivision: lower marlstone, middle calcareous shale with bivalve shells, and upper calcareous shale. It is 
organic‐rich, and lateral variations in its maturity have been related to deep burial or the effects of the Vlotho Massif, a purported deep-seated 
igneous intrusion. We have analysed a total of 300 whole core pieces and core plugs from 6 research boreholes, which completely penetrated 
the Posidonia Shale of the Hils Syncline, covering the maturity range Rm = 0.48 ‐ 1.45%. The two fundamental components of gas shales, 
namely, the origin/occurrence of in‐situ gas and the nature of the rock matrix, have both been studied. Only at the highest studied maturity level 
(1.45% Ro) does the Posidonia Shale begin to fulfill the empirical organic geochemical criteria which label it as a gas shale candidate. The 
Posidonia Shale originally contained Type II kerogen of Petroleum Type Organofacies Low Wax P‐N‐A in all boreholes. Geochemical logging 
revealed that vertical heterogeneity in richness and quality is significant in single wells, in part related to depositional facies. However, maturity 
variability between locations is responsible for much larger shifts in TOC, S1 and S2 values. The relative amounts of the different clay mineral 
groups remain constant with increasing levels of thermal maturity, though porosity and pore size are reduced. Heterogeneities in bitumen, 
kerogen, and mineral abundances at the nanometre scale occur in overmature samples. Gas retention efficiencies for the represented maturation 
stages were calculated as a function of Transformation Ratio, using bulk and compositional mass balance models. Because the Posidonia Shale 
displays similarities to the Barnett Shale, we conclude that it represents a potentially productive gas shale in Germany. 
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Talk Outline

• Quick-View Posidonia Shale – a 
European gas shale candidate

• Gas-in-place mass balance and MSSV 
calculation for Rm >1.45%

• Chemical versus physical control of 
GOR for Rm = 0.52 - 1.45%

• Conclusions
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Quick-View 1 Basic OM characteristics
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Rm = 0.65%
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Mass = original OM x conversion x retention efficiency x GOR

Exploration Equation
Gas-in-place

Mass balance calculation

Rm range 0.48 – 1.45%
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TOC S1 S2 HI PI Tmax 

% mg/g rock mg/g rock mg/g TOC °C

POSIDONIA STATISTICS

mean of  101 samples Wickensen 9.66 3.45 61.59 637 0.05 427

mean of  82 samples Wenzen 10.55 1.12 69.80 662 0.02 424

mean of  48 samples Dohnsen 8.00 3.64 39.25 491 0.08 449

mean of 104 samples Dielmissen 9.05 5.96 53.77 594 0.10 439

mean of 64 samples Harderode 6.79 3.59 24.50 361 0.13 446

mean of 77 samples Haddessen 5.76 1.19 4.62 80 0.21 458

Input Data

476 samples from 6 wells
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Extent of Generation
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PEE = Petroleum Expelled
Petroleum Generated + Initial Petroleum

PEE =    (S2o + S1o) – (S2m – S1m)
(S2o – S2m) + S1o

Extent of Expulsion

PGI = (S2o – S2m) + S1o
S2o + S1o

Pyrolyse immature sample 
to the TR that was 
calculated from the mass 
balance

Assess gas loss from S1m using MSSV pyrolysis

Petroleum Expulsion Efficiency
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Mass = original OM x conversion x retention efficiency x GOR

Exploration Equation
Gas-in-place

Rm range 0.48 – 1.45%

40m thick, 150 sq km
Gas yield = 5.0 * 106 metric tons or 0.25 Tcf at 1.45% 

Rm range > 1.45%

40m thick, 150 sq km
Maximum gas yield of 2.5 Tcf
50 bcf per sq mile 
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Influence of phase behaviour
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Conclusions

• Posidonia Shale is an efficient 
expeller of liquid hydrocarbons

• At Rm >1.45% the Posidonia Shale 
fulfills empirical shale gas criteria 

• Upscaling: 2.5 Tcf for 40m thickness 
over 150 sq km in LSB 

• PVT plays key role in GOR control of 
potential shale oil plays
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Gas Shales in Europe

Reservoir scale, regional scale, black shale database

Sponsors to date …

Scientific partners

National Geological Surveys (examples)




