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Abstract 
 
High gas content in shale is dependent on the generation of products from both kerogen (primary cracking) and on the cracking of generated 
products retained in the source‐reservoir system. To predict gas yields of these systems, a mass balance compositional model of organic matter 
decomposition was derived from a series of experimental data sets on low sulfur Type II marine shale (Toarcian Shale, Paris Basin). Additional 
data was collected on various shale‐gas systems in North America and potential systems in Europe. 
 
This new model demonstrates that primary cracking occurs under lower thermal stress than previously published, accounts for only small 
portion of the hydrocarbons generated, and gas yield is primarily due to the secondary cracking of the polar fractions. The new mass balance 
model accounts for primary cracking of kerogen (early gas and oil), secondary decomposition of polar compounds (main oil to main gas 
windows), and finally late gas generation from decomposition of refractory or restructured kerogen. These data may be utilized to assess the 
likelihood of commercial gas contents in shale resource plays. The implications for unconventional resource systems are: 

1. Hydrocarbons are generated at lower thermal exposure than previously predicted. 
2. Secondary cracking of generated products occurs contemporaneously with their formation.  
3. Gas generation is continuous throughout the oil and gas windows from kerogen cracking with the principal yield from secondary 

cracking of polars.  
4. Maturation induced changes in kerogen characteristics and rock matrix.  
5. Pressure and resistivity increase. 
6. Carbon dioxide is generated throughout maturation and increases water acidity. 
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GoalsGoals
•• A comprehensive compositional yield and A comprehensive compositional yield and 

kinetic model that can be applied to kinetic model that can be applied to 
conventional and unconventional petroleum conventional and unconventional petroleum 
systems in order to predict expulsion/retention systems in order to predict expulsion/retention 
yieldsyields

•• Show which compositional factors affectShow which compositional factors affect


 
Retention (adsorption) (ultimately GIP, OIP)Retention (adsorption) (ultimately GIP, OIP)


 
ViscosityViscosity


 
GORGOR


 
Late gas generationLate gas generation

•• Provide calibration from carbon isotopes for Provide calibration from carbon isotopes for 
basin modeling effortsbasin modeling efforts
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PyrolysisPyrolysis
 

of Organic Matterof Organic Matter

55

• Closed-system pyrolysis
• Isothermal for variable times usually between 1-216 hours
• Filled with isolated kerogen
• No water added
• With 100 bars of pressure
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Gold Tubes and Gas Capture LineGold Tubes and Gas Capture Line
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IFP (Behar) Analytical Flow Chart:IFP (Behar) Analytical Flow Chart:
 compositional yields and kineticscompositional yields and kinetics
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Characteristics of Characteristics of 
ClosedClosed--System System PyrolysisPyrolysis

88

• The products looks nearly identical to naturally 
derived products

• It is difficult to impossible to decouple primary 
products from kerogen cracking from those of 
secondary products

• Primary decomposition is defined as products 
strictly from kerogen decomposition

• Secondary decomposition is defined as
decomposition of any of the primary products
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Primary and Secondary Cracking KineticsPrimary and Secondary Cracking Kinetics
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Key component of Key component of 
IFP kinetics schemaIFP kinetics schema……

1010

decoupling primary and secondary cracking kinetics

By definition:

• Primary cracking = any product formed from kerogen

• Secondary cracking = decomposition of those     
products formed during primary cracking from kerogen
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Kerogen and Bitumen:Kerogen and Bitumen:
 the problem of overlapping decompositionthe problem of overlapping decomposition

1111

Primary and Secondary Products
decomposing contemporaneously
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Yield of Secondary Products from Yield of Secondary Products from 
Kerogen CrackingKerogen Cracking
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Distribution of Secondary Distribution of Secondary 
Products from KerogenProducts from Kerogen
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Gas Yields from Barnett Shale KerogenGas Yields from Barnett Shale Kerogen
 (at 325(at 325ooC for 24 hours in percent of total gas)C for 24 hours in percent of total gas)
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Comparison of Gas Yield from Comparison of Gas Yield from 
Retained Oil PercentageRetained Oil Percentage
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dcmdcm--NSOsNSOs
 

(bitumen) (dichloromethane soluble) (bitumen) (dichloromethane soluble) 
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nC5nC5--NSOs (pentane soluble)NSOs (pentane soluble)
 Decomposition ProductsDecomposition Products
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Excellent Yield Comparison between
 gold tube and hydrous experiments
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Computed Decomposition RatesComputed Decomposition Rates
 for various fractions at fixed heating rate (2.5for various fractions at fixed heating rate (2.5ooC/my)C/my)

2020

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

80 70 60 50 40 30 20 10 0
Geologic Time (Ma)

Kerogen

DCM/NSO

nC5/NSO

C14+Arom

C14+Satu

2.5oC/m.y.



JarvieJarvie, Behar, and , Behar, and MazeasMazeas, AAPG ACE New Orleans, LA, USA, 11, AAPG ACE New Orleans, LA, USA, 11--14 April 201014 April 2010

Secondary Gas GenerationSecondary Gas Generation
 from hydrocarbon decompositionfrom hydrocarbon decomposition
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Differences in Kinetic Model ResultsDifferences in Kinetic Model Results
 on the Same Sample (GRS)on the Same Sample (GRS)
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Comparison of Comparison of PyrolysisPyrolysis
 Approaches at 325Approaches at 325ooCC
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Barnett Barnett 
Shale:Shale:

 
dcmdcm--NSOsNSOs
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nC5nC5--
 NSOsNSOs
 

carboncarbon
 isotopesisotopes
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LateLate
 GasGas
 (kerogen(kerogen22

 

):):
 

carbon carbon 
isotopesisotopes
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Recent FindingsRecent Findings
• Closed system and fractionation of products is required to obtain 

decoupled reaction kinetics for primary and secondary cracking pathways
• Water is not required
• Yields are comparable between hydrous and non-hydrous closed 

systems
• Open system kinetics tend to 


 
Combine primary and secondary cracking as well as some zero order 
desorption products



 
Underestimate temperatures for conversion



 
Underestimate yields of hydrocarbons



 
Represent both first and second order reactions, as well as some potential for 
zero order (desorption) 



 
Open system kinetics with a single activation energy typically underestimate 
early conversion of kerogen

• NSO fractions are an important consideration in both hydrocarbon 
generation but also expulsion/retention processes

2727
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Merci Beaucoup !Merci Beaucoup !
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