Natural Fractures in the Barnett Shale in the Delaware Basin, Pecos Co. West Texas: Comparison with the Barnett Shale in the Fort Worth Basin*

Julia F. Gale¹, Robert M. Reed¹, Stephen P. Becker¹, and Walaa Ali²

Search and Discovery Article #10226 (2010)
Posted February 3, 2010

*Adapted from oral presentation at AAPG Convention, Denver, Colorado, June 7-10, 2009

¹Bureau of Economic Geology, Jackson School of Geological Sciences, The University of Texas at Austin, Austin, TX (julia.gale@beg.utexas.edu)
²Department of Geological Sciences, Jackson School of Geological Sciences, The University of Texas at Austin, Austin, TX

Abstract

This study describes several sets of natural fractures in a Barnett Shale core from Pecos County, including partly open fractures, fractures associated with chert layers, and early deformed fractures. These are compared with fractures previously described in the Barnett Shale in the Fort Worth Basin. The steep, narrow, calcite-sealed fractures that are present in many Barnett cores in the Fort Worth Basin are important because of their likely tendency to reactivate during hydraulic fracture treatments. In the core studied here from the Delaware Basin there are many different fracture types, including open fractures with cement bridges. The importance of natural fractures for completions in the Delaware Basin is therefore different from that in the Fort Worth Basin.

The range of fracture types is also of potential use in documenting chemical and mechanical processes that were operative during basin development. Early, sediment-filled fractures that were folded during compaction are present. Later fractures contain quartz and dolomite sealing cements. Fluid inclusions and fracture sealing cement patterns can provide information on temperature, pressure and composition of fluids at the time of fracturing. For example, fibrous, bedding-parallel quartz veins contain petroleum inclusions with gas bubbles, indicating this fracture set must have developed under conditions of hydrocarbon cracking, and is probably due to overpressuring.
References

Natural Fractures in the Barnett Shale in the Delaware Basin, Pecos Co. West Texas: Comparison with the Barnett Shale in the Fort Worth Basin

Julia F. W. Gale, Robert M. Reed, Stephen Becker¹, and Walaa Ali

Bureau of Economic Geology
The John A. and Katherine G. Jackson School of Geosciences
The University of Texas at Austin

¹ Present Affiliation: ExxonMobil Upstream Research Company, Houston TX

Thanks to Pioneer Natural Resources
Outline

• Introduction
 – Opening-mode fracture importance
 – Previous findings, Fort Worth Basin

• Fractures in the Delaware Basin
 – Characterization
 – Origin and timing
 – Present day in-situ stress

• Conclusions
Natural Fracture Relevance for Shale-Gas Plays

• Several scenarios:
 - open, enhance permeability, advantageous;
 - open and detrimental to well completion;
 - sealed but affect hydraulic fracture propagation (positive or negative effect);
 - sealed and have no effect on completion methods or production;
 - absent or sufficiently low in intensity to be irrelevant.
Barnett Shale, Fort Worth Basin

- Steeply dipping
- Right- and left-stepping examples
- Sealed with calcite
Hydraulic fracture treatments pumping phase

Hydraulic fracture resumes in $S_{H\text{max}}$ direction at natural fracture tip

Reactivation of natural fractures

Trace of part of horizontal wellbore with perforation

Hydraulic fractures NE-SW

Secondary natural fractures N-S

Dominant natural fracture cluster WNW

$S_{H\text{max}}$

Figure from Waters et al., 2006, SPE 103202

Microseismic monitoring

σ_H

~ 500 ft
Tensile Testing Results

- Failure along fracture, EVEN THOUGH THESE ARE SEALED
- Specimens with natural fractures are half as strong as those without

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Rupture (kpsi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With natural fracture</td>
<td></td>
</tr>
<tr>
<td>2T</td>
<td>2.45</td>
</tr>
<tr>
<td>5T</td>
<td>3.86</td>
</tr>
<tr>
<td>3B</td>
<td>3.29</td>
</tr>
<tr>
<td>No natural fracture</td>
<td></td>
</tr>
<tr>
<td>9T</td>
<td>6.15</td>
</tr>
<tr>
<td>11T</td>
<td>6.41</td>
</tr>
</tbody>
</table>

From Gale and Holder (2008)
SEM Imaging of Fractures

Backscattered electron image (BSE) shows differences in atomic number, brighter indicates higher number.

False-color EDS element map
Red = Si; Green = S; Blue = Ca

Pyrite
Calcite
Dolomite
Barite
Albite
Quartz
Several scenarios:
- open, enhance permeability, advantageous;
- open and detrimental to well completion;
- sealed but affect hydraulic fracture propagation (positive or negative effect);
- sealed and have no effect on completion methods or production;
- absent or sufficiently low in intensity to be irrelevant.
Delaware Basin Study

Barnett Shale

Map courtesy Steve Ruppel
12,606.5 ft

Open Fracture
Barnett Shale, Delaware Basin

Quartz bridges
Quartz lining
Partly Open Fracture

- Had been picked as induced fracture on image log (black)
- Note fully sealed tip
- Trend is NE-SW, dipping to SE
- Here natural and induced fractures are sub-parallel

12,443 ft
Interpreted Conductive Fractures
Image Log

Stereographic projection – poles to fractures

High variability of strike, NW-SE dominant
Most steeply dipping to the SW or W
Low angle opening-mode fractures

Fibrous fill
Early fractures

- Carbonate and quartz cement
- Vertical and horizontal components
- Complex branching
- Tapers down and up
- Vertical component shortened by compaction
- Internal fabric
- Porosity
Origin of Opening-Mode Fractures

- Regional burial plus gas generation
- Differential compaction (local stress)
- Regional, tectonic paleostress
- Local effects of major faults and folds
- Sag features associated with underlying karst
- Stress release during uplift

Map after Montgomery et al. (2005)
Fracturing History

Compacted fractures, early carbonate cement, later quartz cement

Smectite to ~95% illite in range 20–200°C, with 17 - 28 wt% release of silica (Van de Kamp, 2008)

Horizontal and irregular vertical fractures. Fibrous quartz cement, petroleum inclusions: trapped during kerogen to oil cracking, before oil to gas is complete

For type II marine algal kerogen primary cracking between 80 and 180°C. Secondary cracking to gas at ≈150°C

Quartz bridged and lined planar fractures. Blocky cement – some crack seal in bridges
Fracture Orientation - Image Log Data

Strike: Induced fractures and breakouts

Sonic scanner and tiltmeter data give S_{Hmax} as NNE
In Situ Stress

Present day in situ stress controls hydraulic fracture orientation

Fort Worth Basin
- in Mid-Plate Compression province

West Texas, Permian Basin
- at boundary between Cordilleran Extension and Southern Great Plains (SGP) provinces
- need to carefully establish S_{Hmax}

Map modified from Zoback and Zoback (1989) and Laubach et al. (2004)
Barnett Delaware Basin
Natural Fracture Relevance

• Several scenarios:
 – open, enhance permeability, advantageous;
 – open and detrimental to well completion;
 – sealed but affect hydraulic fracture propagation (positive or negative effect);
 – sealed and have no effect on completion methods or production;
 – absent or sufficiently low in intensity to be irrelevant.
Conclusions
Barnett Shale, Delaware Basin

• Many different natural fracture types
 – Open fractures in core
 – Many other sealed fractures

• Fracture cements may provide key to timing
 – Composition and texture
 – Fluid inclusions

• Natural opening-mode fractures important for completions
Acknowledgments

- Ruarri Day-Stirrat for help with Genesis modeling

- Tom Sinclair and Alton Brown for discussions on Delaware Basin burial history