Reevaluating Depositional Models for Shelf Shales*

Janok Bhattacharya

Search and Discovery Article #50242 (2010)
Posted January 19, 2010

*Adapted from oral presentation at AAPG Annual Convention, Denver, Colorado, June 7-10, 2009. Please refer to closely related article listed in References below by Bhattacharya, J.P., and MacEachern, J.A. (2009a) and an extended abstract by them (Bhattacharya, J.P., and MacEachern, J.A., 2009b).

1Earth and Atmospheric Sciences, University of Houston, Houston, TX (jpbhattacharya@uh.edu)

Abstract

Despite the assumption that the bulk of marine “shelf” mud is deposited by gradual fallout from suspension in quiet water, modern muddy shelves and their associated rivers show that they are dominated by hyperpycnal fluid mud. This has not been widely applied to the interpretation of ancient sedimentary shale successions. We analyze several ancient Cretaceous prodelta shelf systems and their associated river deposits. Paleodischarge estimates of trunk rivers show that they fall within the predicted limits of rivers that are capable of generating hyperpycnal plumes. The associated prodeltaic mudstones match modern hyperpycnite facies models and suggest a corresponding hyperpycnal character. Physical sedimentary structures include diffusely stratified beds that show both normal and inverse grading, indicating sustained flows that waxed and waned. They also display low intensities of bioturbation, which reflect the high physical and chemical stresses of hyperpycnal environments. Hyperpycnal conditions are ameliorated by the fact that these rivers were relatively small, dirty systems that drained an active orogenic belt during humid temperate to subtropical “greenhouse” conditions. During sustained periods of flooding, such as during monsoons, the initial river flood may lower salinities within the inshore area, effectively “prepping” the area and allowing subsequent floods to become hyperpycnal much more easily. Although shelf slopes were too low to allow long-run-out hyperpycnal flows, the storm-dominated nature of the seaway likely allowed fluid mud to be transported for significant distances across and along the paleo-shelf. Prodelta hyperpycnites form leaner, gas-prone source rocks, prone to the generation of overpressure, versus more slowly deposited, organic-rich, anoxic laminites and condensed-section shales.

Nakajima, T., 2006, Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea: Journal of Sedimentary Research, v. 76, p. 60–73.

Re-evaluating depositional models for shelf shales:
Examples from the Cretaceous Seaway of North America

Janok P. Bhattacharya
UNIVERSITY of HOUSTON
Key Problems

• The textbooks tell us:
 – The prodelta is the area where fine material settles quietly out of suspension (Bhattacharyya and Walker, 1992).
 – The finest-grained deposits of the delta front occur in the deeper water (prodelta) area where deposition is mainly from suspension (Nichols, 1999).
 – Shales form under any environmental condition in which sediment is abundant and water energy is sufficiently low to allow settling of suspended fine silt and clay (Boggs, 2001).
 – Relatively weak transporting currents deposit mudrocks. Sedimentary structures in mudrocks are difficult to see and are of limited use in interpretation (Prothero and Schwab, 2004).
However mud can move as bedload!

World’s first circulating mud flume, built by J. Schieber, shows that clays invariably flocculate and migrate as bedload ripples at velocities of about 20 cm/s.

http://mypage.iu.edu/~jschiebe/Shale-Studies.htm
Cross-lamination in Devonian Black Albany Shale shows evidence of bedload transport, probably by storms (from Schieber et al., 2007, Science).
Mud delivery to the shelf

- Newer oceanographic studies emphasize:
 - Importance of rapidly deposited fluid muds
 - (Kineke et al., 1996; 2000)
 - Importance of hyperpycnal mud plumes
 - (Nemec, 1995; Kineke et al., 2000; Mulder and Syvitsky, 1995; Mulder and Alexander, 2001; Piret-Björklund and Steel, 2004).
 - Importance of storms that aid gravity transport of mud on sea floor and across shelf.
 - (Bentley, 2003 Friedrichs and Scully, 2007)
What is needed for hyperpycnal flows

- During successive floods, salinity is lowered, especially in shallow water settings.
- This enhances ability of feeding river to go hyperpycnal.
 - Atchafalaya, Orinoco
- Bays get prepped!

Depressed salinities following river floods in Atchafalaya Bay (from Allison et al., 2000)
Types of Delta Plumes

A. Hypopycnal Plume
 - Salt Wedge
 - River-Fed Hypopycnal Plume
 - Slope > 0.7°

B. Hypopycnal Plume
 - Salt Wedge
 - Wave-Aided Hypopycnal Plume
 - Slope < 0.3°

From Bhattacharya (2009)
Hyperpycnite Facies Model

From Mulder et al., 2003
Note superposition of inversely (Ha) and normally (Hb) graded layers.
Modern Prodelta Hyperpycnites: Atchafalaya, GOM

- Heterolithic clays, silts, and very fine sand.
- Low level of burrowing
- Normal grading
- Some cross lamination

From Bhattacharya and MacEachern after Allison and Neill, 2003
Modern examples of hyperpycnal flow deposits:

- Graded beds
- Limited burrowing
- Dewatering
- Cross lamination (indicating bedload transport and wave reworking)
Modern Hyperpycnites from Japan

- These are deposited 700 km from the shoreline in 3000m water depth.
- Note inverse and normal grading

From Bhattacharya and MacEachern after Nakajima, 2006
What about the Cretaceous in Utah?

- Note thick prodelta Mancos shales below Ferron shoreline sandstones.
- Where on earth does all this mud come from?
Key Problems

• Are hyperpycnal processes important in building the stratigraphic record?

• Can modern examples be used to interpret ancient “hyperpycnites”?
 – Facies models

• Is bedload transport more important than suspension settling in forming these mudstones?

• Muddy coastlines and cheniers are common in the Holocene but there are very few ancient examples.
 – Most “shelf” mudstones are historically interpreted as distal offshore.
What do the rocks look like?

- Prodelta to delta-front facies successions form upward-coarsening deposits
Well log correlations show alternation of sandy clastic wedges with muddy distal clinoforms versus tabular more organic-rich source-rock shales.
• Wedge-shaped formations show clinoforms.
• Tabular organic-rich units show a more “railroad track” style of correlations in well logs.

Bhattacharya, 1994
Dunvegan Allostratigraphy

- Wedge-shaped formations show clinoforms.
- Tabular organic-rich units show a more “railroad track” style of correlations in well logs.
Cretaceous Prodelta Facies, Dunvegan Fm.

Facies in a clinoform deposit
Cretaceous Prodelta Facies, Dunvegan Fm.
Prodelta Facies

- Normal and inverse graded siltstones and very fine ssts.

From Bhattacharya and MacEachern (2009) after Nakajima, 2006
Low-angle cross lamination also suggests mud ripples
Prodelta Facies

- Lack of burrowing reflects fluvial influence (high sedimentation rate).

Dunvegan prodelta

Atchafalaya Prodelta

3cm
Prodelta Facies

- Higher burrowing non-deltaic shelf (lower sedimentation rate).

Burrowed offshore shelf muds from Atchafalaya resemble non-deltaic Dunvegan facies.

Highly burrowed shelf mudstones, Cretaceous Dunvegan Formation, Alberta. Slow sedimentation rates indicate far from fluvial influence.
Low burrowing and wave ripples suggest wave-aided transport

Wave-rippled sandstones and interbedded lightly burrowed laminated mudstones, Cretaceous Dunvegan Formation, Alberta.

Aggrading wave ripples suggest rapid sediment fall-out during a significant storm.
Ferron prodelta facies

Note graded siltstone beds that lack burrowing
• Normal and inverse grading suggest a fluid-mud, hyperpycnal origin.
• Thinner beds show cross lamination, suggesting some bedload transport.
Close-up of Ferron prodelta facies
Normal and inverse grading suggests hyperpycnal flows.
Theory: Hyperpycnal Flows less likely in rivers with discharge $> 6,000\text{m}^3/\text{s}$

Favors small, “dirty” rivers that drain an active orogenic belt.

\[C_{S_{\text{flood}}} = 2.051 \times 10^4 Q_{av}^{-1.054} + 4.31 \]

\[r^2 = 0.66 \]

Mulder and Syvitsky, 1995
What is needed for hyperpycnal flows

- High Relief
 - Rocky Mountains

- High Rainfall
 - Humic paleosols, abundant coals and wetlands, tropical to temperate climate, global greenhouse.

- Small to intermediate, dirty mountain rivers

- Brackish coastal area
 - Stormy, shallow, epeiric sea

- Cretaceous interior seaway has all of these essential characteristics to generate hyperpycnal flows.
Conclusions

• We have improved understanding of the importance of hyperpycnal flows in modern settings and how they are recognized.

Kineke et al., 2000
Conclusions

• Ancient Cretaceous systems show evidence of abundant prodelta muddy “hyperpycnites”.

Dunvegan Prodelta

Ferron Prodelta
Conclusions

- 50% of “shelf” mud may be hyperpycnal.